Netskope vuelve a ser reconocido como Líder en el Cuadrante™ Mágico de Gartner® para plataformas SASE. Obtener el Informe

cerrar
cerrar
Su red del mañana
Su red del mañana
Planifique su camino hacia una red más rápida, más segura y más resistente diseñada para las aplicaciones y los usuarios a los que da soporte.
          Descubra Netskope
          Ponte manos a la obra con la plataforma Netskope
          Esta es su oportunidad de experimentar de primera mano la Netskope One plataforma de una sola nube. Regístrese para participar en laboratorios prácticos a su propio ritmo, únase a nosotros para una demostración mensual del producto en vivo, realice una prueba de manejo gratuita de Netskope Private Accesso únase a nosotros para talleres en vivo dirigidos por instructores.
            Líder en SSE. Ahora es líder en SASE de un solo proveedor.
            Netskope ha sido reconocido como Líder con mayor visión tanto en plataformas SSE como SASE
            2X líder en el Cuadrante Mágico de Gartner® para SASE Plataforma
            Una plataforma unificada creada para tu viaje
              Protección de la IA generativa para principiantes
              Protección de la IA generativa para principiantes
              Descubra cómo su organización puede equilibrar el potencial innovador de la IA generativa con sólidas prácticas de seguridad de Datos.
                Prevención de pérdida de datos (DLP) moderna para dummies eBook
                Prevención moderna de pérdida de datos (DLP) para Dummies
                Obtenga consejos y trucos para la transición a una DLP entregada en la nube.
                  Libro SD-WAN moderno para principiantes de SASE
                  SD-WAN moderna para maniquíes SASE
                  Deje de ponerse al día con su arquitectura de red
                    Entendiendo dónde está el riesgo
                    Advanced Analytics transforma la forma en que los equipos de operaciones de seguridad aplican los conocimientos basados en datos para implementar una mejor política. Con Advanced Analytics, puede identificar tendencias, concentrarse en las áreas de preocupación y usar los datos para tomar medidas.
                        Soporte técnico Netskope
                        Soporte técnico Netskope
                        Nuestros ingenieros de soporte cualificados ubicados en todo el mundo y con distintos ámbitos de conocimiento sobre seguridad en la nube, redes, virtualización, entrega de contenidos y desarrollo de software, garantizan una asistencia técnica de calidad en todo momento
                          Vídeo de Netskope
                          Netskope Training
                          La formación de Netskope le ayudará a convertirse en un experto en seguridad en la nube. Estamos aquí para ayudarle a proteger su proceso de transformación digital y aprovechar al máximo sus aplicaciones cloud, web y privadas.

                            AI/ML for Malware Detection

                            Sep 02 2021

                            This is the fourth in an ongoing series of blogs focused on AI/ML.  

                            Malware detection is an important part of the Netskope Security Cloud platform, complete with a secure access service edge (SASE) architecture, that we provide to our customers. Malware is malicious software that is designed to harm or exploit devices and computer systems. Various types of malware, such as viruses, worms, Trojan horses, ransomware, and spyware, remain a serious problem for corporations and government agencies. Traditional malware detection systems rely on anti-virus signatures, heuristics, and behavior patterns in sandboxes, which require a significant amount of manual analysis from security analysts and researchers. With new attacks and variants emerging every day, it is hard for organizations to keep pace with malware threats. In comparison, artificial intelligence (AI) and machine learning (ML) has the potential to detect unknown and zero-day malware by automatically learning the malware patterns based on large volumes of historical data. This unique capability has made AI/ML an indispensable part of a modern malware detection solution, complementing heuristic and signature-based approaches. 

                            At Netskope, we have developed a comprehensive, multi-layered threat protection system to scan our customers’ network traffic. AI/ML is used to power multiple engines in the inline fast scan, as well as static and dynamic analysis-based deep scan. In this blog post, we will highlight three of them:

                            • Inline PE Classifier
                            • MS Office Classifier
                            • Cloud Sandbox

                            Inline PE Classifier

                            The Portable Executable (PE) file format is used by Windows executables, object code, and dynamic link libraries (DLLs). It’s one of the most common malware file formats. To stop malicious PE files in real-time, we have developed the inline PE classifier. Trained with millions of malicious and benign PE samples, the ML-based classifier is able to identify malware patterns in raw bytes. The classifier doesn’t need to parse a PE file and extract features based on domain knowledge. Therefore, it’s lightweight, fast, and suitable for inline predictions.

                            The inline PE classifier complements the signature-based malware engines in fast scan. Since its launch, the classifier has detected unique malware samples that were undetectable to signature-based inline engines, without introducing any new false positives. Its runtime in production is just a few milliseconds.

                            This high efficacy ML classifier enables faster time to detection for unique detections that can be blocked inline and complements the dynamic analysis with advanced forensics in the Advanced Threat Protection engines.

                            MS Office Classifier

                            Microsoft Office documents are another common source of malware. As part of Netskope’s Advanced Threat Protection, the Office Classifier is designed to leverage a combination of heuristics and supervised machine learning to identify malicious code embedded in Office documents. The Office Classifier performs static analysis and extracts detailed information about the components in an Office file, including embedded macros (VBA), dynamic data exchange (DDE), and other jpg/mpeg or EXE/PE files. The extracted information is then mapped to hundreds of features to train ML classification models and predict whether a new Office document is malicious or not.

                            The Office Classifier provides proactive coverage against zero-day malware attacks that can evade signature-based detections. For example, the Office Classifier has detected downloads of multiple zero-day Emotet samples distributed as Office document files targeting multiple Netskope customers (see screenshot below). The Emotet samples used multi-layered obfuscation techniques to bypass signature-based AV software but were detected by the Office Classifier. Recently, the Office Classifier also detected a new set of malicious Office documents that use VBA and LoLbins.

                            Screenshot of the Office Classifier detecting downloads of multiple zero-day Emotet samples distributed as Office document files

                            Cloud Sandbox

                            Sandbox has been proven to be an effective way to detect advanced malware. The Cloud Sandbox is enhanced with a machine learning engine in Netskope’s Advanced Threat Protection system. The Cloud Sandbox collects sample behaviors by executing them in an isolated Windows environment. The report of observed behaviors can then be used for heuristics and ML-based malware detection. Each report contains runtime behavior, such as process trees, where each tree node represents the behavior of a process, including API calls, dynamic link libraries (DLL), registry key activities, file activities, and network activities. We use deep learning transformer techniques to learn the tree structure and activities of the sandbox report and classify whether the file is malicious or not. 

                            Diagram of process trees

                            Summary

                            At Netskope, we have integrated AI/ML into our large-scale malware detection system to power multiple static and dynamic analysis engines. It is clear that AI/ML can identify unknown malware with great precision and complement other signature and heuristic engines. There are technical challenges associated with AI/ML, including high accuracy and low latency requirements, changing malware patterns, and model interpretability. We are addressing these challenges to reach AI/ML’s full potential in malware detection.

                            author image
                            Yihua Liao
                            Dr. Yihua Liao is the Head of AI Labs at Netskope. His team develops cutting-edge AI/ML technology to tackle many challenging problems in cloud security.
                            Dr. Yihua Liao is the Head of AI Labs at Netskope. His team develops cutting-edge AI/ML technology to tackle many challenging problems in cloud security.
                            Conéctese con Netskope

                            Subscribe to the Netskope Blog

                            Sign up to receive a roundup of the latest Netskope content delivered directly in your inbox every month.