Evento di Lancio: Smart AI Security. Controllo Totale dei Dati. Prenota il tuo posto

chiudere
chiudere
La tua rete di domani
La tua rete di domani
Pianifica il tuo percorso verso una rete più veloce, sicura e resiliente, progettata per le applicazioni e gli utenti che supporti.
Experience Netskope
Prova direttamente la piattaforma Netskope
Ecco la tua occasione per sperimentare in prima persona la piattaforma single-cloud di Netskope One. Iscriviti a laboratori pratici e a ritmo autonomo, unisciti a noi per dimostrazioni mensili di prodotti dal vivo, fai un test drive gratuito di Netskope Private Access o partecipa a workshop dal vivo guidati da istruttori.
Un leader in SSE. Ora è un leader nel settore SASE a singolo fornitore.
Netskope è riconosciuto come Leader Più Lontano in Visione sia per le piattaforme SSE che SASE
2 volte leader nel Quadrante Magico di Gartner® per piattaforme SASE
Una piattaforma unificata costruita per il tuo percorso
Securing Generative AI for Dummies
Securing Generative AI for Dummies
Scopri come la tua organizzazione può bilanciare il potenziale innovativo dell'AI generativa con pratiche solide di sicurezza dei dati.
eBook sulla Modern Data Loss Prevention (DLP) for Dummies
Modern Data Loss Prevention (DLP) for Dummies
Ricevi consigli e trucchi per passare a un DLP fornito dal cloud.
Modern SD-WAN for SASE Dummies Book
Modern SD-WAN for SASE Dummies
Smettila di inseguire la tua architettura di rete
Comprendere dove risiede il rischio
Advanced Analytics trasforma il modo in cui i team di operazioni di sicurezza applicano insight basati sui dati per implementare policy migliori. Con l'Advanced Analytics, puoi identificare tendenze, concentrarti sulle aree di interesse e utilizzare i dati per agire.
Supporto tecnico Netskope
Supporto tecnico Netskope
I nostri ingegneri di supporto qualificati sono dislocati in tutto il mondo e possiedono competenze diversificate in sicurezza cloud, networking, virtualizzazione, content delivery e sviluppo software, garantendo un'assistenza tecnica tempestiva e di qualità.
Video Netskope
Formazione Netskope
La formazione Netskope ti aiuterà a diventare un esperto di sicurezza cloud. Siamo qui per aiutarti a proteggere il tuo percorso di trasformazione digitale e a sfruttare al meglio le tue applicazioni cloud, web e private.

In the Blink of AI — How Artificial Intelligence is Changing the Way Enterprises Protect Sensitive Data in Images

Jul 27 2020

Co-authored by Yihua Liao and Yi Zhang

You have probably heard of how AI technology is used to recognize cats, dogs and humans in images, a task known as image classification. The same technology that identifies a cat or dog – can also identify sensitive data (such as identification cards and medical records) in images traversing your corporate network. In this blog post, we will show you how we use convolutional neural networks (CNN), transfer learning, and generative adversarial networks (GAN) to provide image data protection for Netskope’s enterprise customers. 

Image Data Security

Images represent over 25% of the corporate user traffic that goes through Netskope’s Data Loss Prevention (DLP) platform. Many of these images contain sensitive information, including customer or employee personally identifiable information (PII) (e.g., pictures of passports, driver’s licenses, and credit cards), screenshots of intellectual property, and confidential financial documents. By detecting sensitive information in images, documents, and application traffic flows, we help organizations comply with compliance regulations and protect their assets.

The traditional approach to identifying sensitive data in an image has been to use optical character recognition (OCR) to extract text out of the image. The extracted text is then used for pattern matching. This technology, though effective, is resource-intensive and delays detection of security violations. OCR also has difficulties identifying violations in low-quality images. In many cases, we only need to determine the classification of the input image. For example, we would like to find out whether an image is a credit card or not, without knowing the 16-digit card number and other details in the image. Machine learning-based image classification is an ideal choice for that because of its accuracy, speed and ability to work inline with granular policy controls. We can also combine image classification with OCR to generate more detailed violation alerts. 

CNN and Transfer Learning

Deep learning and convolutional neural networks (CNN) were a huge breakthrough in image classification in the early 2010s. Since then, CNN-based image classification has been applied to many different domains, including medicine, autonomous vehicles, and security, with accuracy close to that of humans. Inspired by how the human visual cortex works, a CNN is able to effectively capture the shapes, objects and other qualities to better understand the contents of the image. A typical CNN has two parts (depicted in the chart below):

  • The convolutional base, which consists of a stack of convolutional and pooling layers. The main goal of the convolutional base is to generate features from the image. It builds progressively higher-level features out of an input image. The early layers refer to general features, such as edges, lines, and dots in the image. Meanwhile, the latter layers refer to task-specific features, which are more human interpretable,  such as the logo on a credit card, or application windows in a screenshot. 
  • The classifier, which is usually composed of fully connected layers. Think of the classifier as a machine that sorts the features identified in the convolutional base. The classifier will tell you if the features identified are a cat, dog, drivers license, or X-ray.
Diagram of CNN and transfer learning
Image Source: DOI: 10.3390/electronics8030292

You may need millions of labeled images to train a CNN from scratch in order to achieve state-of-the-art classification accuracy. It is not trivial to collect a large number of images with proper labels, especially when you are dealing with sensitive data such as passports and credit cards. Fortunately, we can use transfer learning, a popular deep learning technique, to train a neural network with just hundreds or thousands of training samples. With transfer learning, we can leverage an existing convolutional neural network (e.g., ResNet or MobileNet) that was trained on a large dataset to classify other objects, and tweak it to train with additional images. Transfer learning allows us to train a CNN image classifier with a limited dataset and still achieve good performance while significantly reducing the training time.

Synthetic Training Data Generation

It’s very challenging to acquire real images for the sensitive categories we are interested in. To increase the amount and diversity of the training dataset and further improve the accuracy of CNN classifiers, we use generative adversarial networks (GAN) to generate synthetic training data. The basic idea of a GAN is to create two neural networks (high-level architecture diagram below), which compete against each other. One neural network, called the generator, generates fake data, while the other, the discriminator, evaluates them for authenticity. The goal is to generate data that is similar to the training data and fool the discriminator.

Diagram of GAN
Image Source: Deep Convolutional Generative Adversarial Networks

With a GAN, we are able to synthesize photorealistic images with varying degrees of change in rotation, color, blurring, background, and so on. Here are a few examples of the synthetic images:

Examples of synthetic images

Netskope’s Inline DLP Image Classifiers

At Netskope, we have developed CNN-based image classifiers, as part of our Next Gen SWG and cloud inline solutions covering managed apps, unmanaged apps, custom apps, and public cloud service user traffic. The classifiers are able to accurately identify images with sensitive information, including passports, driver’s licenses, US social security cards, credit cards and debit cards, fullscreen and application screenshots, etc. The inline classifiers provide granular policy controls in real-time.

Examples of passports, drivers licenses, social security numbers, and credit/debit cards
Screenshots of examples

Future Work

At Netskope, we are actively expanding our portfolio of inline image classifiers with the latest computer vision technology. We also have the capability to train custom classifiers and identify new types of images that our customers are interested in classifying. If your organization has unique assets that may be shared in images and you’d like to protect those assets, please contact us at [email protected] to learn more.

author image
Yihua Liao
Dr. Yihua Liao is the Head of AI Labs at Netskope. His team develops cutting-edge AI/ML technology to tackle many challenging problems in cloud security.
Dr. Yihua Liao is the Head of AI Labs at Netskope. His team develops cutting-edge AI/ML technology to tackle many challenging problems in cloud security.
Connettiti con Netskope

Iscriviti al blog di Netskope

Iscriviti per ricevere ogni mese una panoramica degli ultimi contenuti di Netskope direttamente nella tua casella di posta.