Netskope named a Leader in the 2022 Gartner® Magic Quadrant™ for Security Service Edge. Get the Report.

  • Plataforma

    Visibilidade incomparável e proteção de dados e contra ameaças em tempo real na maior nuvem privada de segurança do mundo.

  • Produtos

    Os produtos Netskope são construídos na Netskope Security Cloud.

A Netskope oferece uma pilha de segurança na nuvem moderna, com capacidade unificada para proteção de dados e ameaças, além de acesso privado seguro.

Explore a nossa plataforma

Netskope é nomeada Líder no Relatório do Quadrante Mágico™ do Gartner de 2022 para SSE

Obtenha o Relatório

Mude para serviços de segurança na nuvem líderes de mercado com latência mínima e alta confiabilidade.

Saiba mais

Previna ameaças que muitas vezes contornam outras soluções de segurança usando uma estrutura SSE de passagem única.

Saiba mais

Soluções de zero trust para a implementação de SSE e SASE

Saiba mais

A Netskope permite uma jornada segura, inteligente e rápida para a adoção de serviços em nuvem, aplicações e infraestrutura de nuvem pública.

Saiba mais
  • Customer Success

    Proteja a sua jornada de transformação digital e aproveite ao máximo as suas aplicações na nuvem, na web e privadas.

  • Atendimento ao cliente

    Suporte proativo e o compromisso em otimizar seu ambiente da Netskope e acelerar seu sucesso.

Confie na Netskope para ajudar você a enfrentar ameaças emergentes, novos riscos, mudanças tecnológicas, mudanças organizacionais e de rede, e novos requisitos regulatórios.

Saiba mais

Contamos com engenheiros qualificados no mundo todo, com experiências variadas em segurança na nuvem, redes, virtualização, entrega de conteúdo e desenvolvimento de software, prontos para prestar assistência técnica oportuna e de alta qualidade.

Saiba mais
  • Recursos

    Saiba mais sobre como a Netskope pode ajudá-lo a proteger sua jornada para a nuvem.

  • Blog

    Saiba como a Netskope viabiliza a segurança e a transformação de redes através do security service edge (SSE).

  • Eventos e workshops

    Esteja atualizado sobre as últimas tendências de segurança e conecte-se com seus pares.

  • Security Defined

    Tudo o que você precisa saber em nossa enciclopédia de segurança cibernética.

Podcast Security Visionaries

Episódio bônus: a importância do Security Service Edge (SSE)

Reproduzir o podcast

Leia as últimas novidades sobre como a Netskope pode viabilizar a jornada Zero Trust e SASE por meio dos recursos do security service edge (SSE).

Leia o Blog

Participe conosco de um workshop prático e gratuito sobre segurança na nuvem que ensinará como adotar serviços na nuvem com segurança dentro da empresa.

Encontre um workshop

O que é o Security Service Edge?

Explore o lado de segurança de SASE, o futuro da rede e proteção na nuvem.

Saiba mais
  • Empresa

    Ajudamos você a antecipar os desafios da nuvem, dos dados e da segurança da rede.

  • Por que Netskope

    A transformação da nuvem e o trabalho em qualquer lugar mudaram a forma como a segurança precisa funcionar.

  • Liderança

    Nossa equipe de liderança está fortemente comprometida em fazer tudo o que for preciso para tornar nossos clientes bem-sucedidos.

  • Parceiros

    Fazemos parceria com líderes de segurança para ajudá-lo a proteger sua jornada para a nuvem.

A Netskope possibilita o futuro do trabalho.

Saiba mais

A Netskope está redefinindo a nuvem, os dados e a segurança da rede para ajudar as organizações a aplicar os princípios de Zero Trust para proteger os dados.

Saiba mais

Pensadores, construtores, sonhadores, inovadores. Juntos, fornecemos soluções de segurança na nuvem de última geração para ajudar nossos clientes a proteger seus dados e seu pessoal.

Meet our team

A estratégia de comercialização da Netskope, focada em Parcerias, permite que nossos Parceiros maximizem seu crescimento e lucratividade enquanto transformam a segurança corporativa.

Saiba mais
Blog Data Science In the Blink of AI — How Artificial Intelligence is Changing the Way Enterprises Protect Sensitive Data in Images
Jul 27 2020

In the Blink of AI — How Artificial Intelligence is Changing the Way Enterprises Protect Sensitive Data in Images

Co-authored by Yihua Liao and Yi Zhang

You have probably heard of how AI technology is used to recognize cats, dogs and humans in images, a task known as image classification. The same technology that identifies a cat or dog – can also identify sensitive data (such as identification cards and medical records) in images traversing your corporate network. In this blog post, we will show you how we use convolutional neural networks (CNN), transfer learning, and generative adversarial networks (GAN) to provide image data protection for Netskope’s enterprise customers. 

Image Data Security

Images represent over 25% of the corporate user traffic that goes through Netskope’s Data Loss Prevention (DLP) platform. Many of these images contain sensitive information, including customer or employee personally identifiable information (PII) (e.g., pictures of passports, driver’s licenses, and credit cards), screenshots of intellectual property, and confidential financial documents. By detecting sensitive information in images, documents, and application traffic flows, we help organizations comply with compliance regulations and protect their assets.

The traditional approach to identifying sensitive data in an image has been to use optical character recognition (OCR) to extract text out of the image. The extracted text is then used for pattern matching. This technology, though effective, is resource-intensive and delays detection of security violations. OCR also has difficulties identifying violations in low-quality images. In many cases, we only need to determine the classification of the input image. For example, we would like to find out whether an image is a credit card or not, without knowing the 16-digit card number and other details in the image. Machine learning-based image classification is an ideal choice for that because of its accuracy, speed and ability to work inline with granular policy controls. We can also combine image classification with OCR to generate more detailed violation alerts. 

CNN and Transfer Learning

Deep learning and convolutional neural networks (CNN) were a huge breakthrough in image classification in the early 2010s. Since then, CNN-based image classification has been applied to many different domains, including medicine, autonomous vehicles, and security, with accuracy close to that of humans. Inspired by how the human visual cortex works, a CNN is able to effectively capture the shapes, objects and other qualities to better understand the contents of the image. A typical CNN has two parts (depicted in the chart below):

  • The convolutional base, which consists of a stack of convolutional and pooling layers. The main goal of the convolutional base is to generate features from the image. It builds progressively higher-level features out of an input image. The early layers refer to general features, such as edges, lines, and dots in the image. Meanwhile, the latter layers refer to task-specific features, which are more human interpretable,  such as the logo on a credit card, or application windows in a screenshot. 
  • The classifier, which is usually composed of fully connected layers. Think of the classifier as a machine that sorts the features identified in the convolutional base. The classifier will tell you if the features identified are a cat, dog, drivers license, or X-ray.
Diagram of CNN and transfer learning
Image Source: DOI: 10.3390/electronics8030292

You may need millions of labeled images to train a CNN from scratch in order to achieve state-of-the-art classification accuracy. It is not trivial to collect a large number of images with proper labels, especially when you are dealing with sensitive data such as passports and credit cards. Fortunately, we can use transfer learning, a popular deep learning technique, to train a neural network with just hundreds or thousands of training samples. With transfer learning, we can leverage an existing convolutional neural network (e.g., ResNet or MobileNet) that was trained on a large dataset to classify other objects, and tweak it to train with additional images. Transfer learning allows us to train a CNN image classifier with a limited dataset and still achieve good performance while significantly reducing the training time.

Synthetic Training Data Generation

It’s very challenging to acquire real images for the sensitive categories we are interested in. To increase the amount and diversity of the training dataset and further improve the accuracy of CNN classifiers, we use generative adversarial networks (GAN) to generate synthetic training data. The basic idea of a GAN is to create two neural networks (high-level architecture diagram below), which compete against each other. One neural network, called the generator, generates fake data, while the other, the discriminator, evaluates them for authenticity. The goal is to generate data that is similar to the training data and fool the discriminator.

Diagram of GAN
Image Source: Deep Convolutional Generative Adversarial Networks

With a GAN, we are able to synthesize photorealistic images with varying degrees of change in rotation, color, blurring, background, and so on. Here are a few examples of the synthetic images:

Examples of synthetic images

Netskope’s Inline DLP Image Classifiers

At Netskope, we have developed CNN-based image classifiers, as part of our Next Gen SWG and cloud inline solutions covering managed apps, unmanaged apps, custom apps, and public cloud service user traffic. The classifiers are able to accurately identify images with sensitive information, including passports, driver’s licenses, US social security cards, credit cards and debit cards, fullscreen and application screenshots, etc. The inline classifiers provide granular policy controls in real-time.

Examples of passports, drivers licenses, social security numbers, and credit/debit cards
Screenshots of examples

Future Work

At Netskope, we are actively expanding our portfolio of inline image classifiers with the latest computer vision technology. We also have the capability to train custom classifiers and identify new types of images that our customers are interested in classifying. If your organization has unique assets that may be shared in images and you’d like to protect those assets, please contact us at [email protected] to learn more.

author image
About the author
Dr. Yihua Liao is the Director of Data Science at Netskope. His team Develops cutting-edge AI/ML technology to tackle many challenging problems in cloud security, including data loss prevention, malware and threat protection, and user/entity behavior analytics. Previously, he led data science teams at Uber and Facebook.
Dr. Yihua Liao is the Director of Data Science at Netskope. His team Develops cutting-edge AI/ML technology to tackle many challenging problems in cloud security, including data loss prevention, malware and threat protection, and user/entity behavior analytics. Previously, he led data science teams at Uber and Facebook.