Netskope est nommé leader dans le Magic Quadrant™ du Gartner 2022 dédié au Security Service Edge Recevoir le rapport

  • Plateforme

    Une visibilité inégalée et une protection des données et des menaces en temps réel sur le plus grand cloud privé de sécurité au monde.

  • Produits

    Les produits Netskope sont conçus sur Netskope Security Cloud.

Netskope offre une solution moderne de sécurité du cloud, dotée de fonctions unifiées en matière de protection des données et de détection des menaces, et d'un accès privé sécurisé.

Découvrir notre plateforme
Birds eye view metropolitan city

Netskope reconnu comme un des leaders dans le rapport du Magic Quadrant™ 2022 du Gartner dédié au SSE

Recevoir le rapport Présentation des produits
Netskope gartner mq 2022 sse leader

Optez pour les meilleurs services de sécurité cloud du marché, avec un temps de latence minimum et une fiabilité élevée.

Plus d'informations
Lighted highway through mountainside switchbacks

Neutralisez les menaces qui échappent souvent à d'autres solutions de sécurité à l'aide d'un framework SSE unifié.

Plus d'informations
Lighting storm over metropolitan area

Solutions Zero Trust pour les déploiements du SSE et du SASE

Plus d'informations
Boat driving through open sea

Netskope permet à toutes les entreprises d'adopter des services et des applications cloud ainsi que des infrastructures cloud publiques rapidement et en toute sécurité.

Plus d'informations
Wind turbines along cliffside
  • Suivi de nos clients

    Sécurisez votre transformation digitale et profitez pleinement de vos applications privées, cloud et Web.

  • Support client

    Un accompagnement proactif et la volonté d'optimiser votre environnement Netskope et de booster votre réussite.

  • Formation et certification

    Grâce à Netskope, devenez un expert de la sécurité du cloud.

Choisissez Netskope pour vous aider à faire face aux menaces toujours grandissantes, mais aussi aux risques émergents, aux évolutions technologiques, aux changements organisationnels et réseau, ainsi qu'aux nouvelles exigences réglementaires.

Plus d'informations
Woman smiling with glasses looking out window

Notre équipe mondiale d'ingénieurs qualifiés met à profit son expérience plurielle dans les domaines de la sécurité du cloud, la mise en réseau, la virtualisation, la diffusion de contenu et le développement logiciel pour fournir une réponse rapide et efficace à vos questions techniques.

Plus d'informations
Bearded man wearing headset working on computer

Sécurisez votre parcours de transformation numérique et tirez le meilleur parti de vos applications cloud, Web et privées grâce à la formation Netskope.

Plus d'informations
Group of young professionals working
  • Ressources

    Découvrez comment Netskope peut vous aider à sécuriser votre migration vers le Cloud.

  • Blog

    Découvrez comment Netskope permet de transformer la sécurité et les réseaux à l'aide du Security Service Edge (SSE).

  • Événements et ateliers

    Restez à l'affût des dernières tendances en matière de sécurité et créez des liens avec vos pairs.

  • Security Defined

    Tout ce que vous devez savoir dans notre encyclopédie de la cybersécurité.

Podcast Security Visionaries

Épisode bonus : L'importance du Security Service Edge (SSE) – en anglais

Écouter le podcast
Black man sitting in conference meeting

Découvrez comment Netskope permet de passer au Zero Trust et au modèle SASE grâce aux fonctions du Security Service Edge (SSE).

Lire le blog
Sunrise and cloudy sky

Conférences Netskope CSO

Rencontrez l'équipe Netskope CSO lors de l'un de nos prochains événements.

Trouver un événement
Netskope CSO Team

Qu'est-ce que le Security Service Edge ?

Découvrez le côté sécurité de SASE, l'avenir du réseau et de la protection dans le cloud.

Plus d'informations
Four-way roundabout
  • Entreprise

    Nous vous aidons à conserver une longueur d'avance sur les défis posés par le cloud, les données et les réseaux en matière de sécurité.

  • Pourquoi Netskope

    La transformation du cloud et le travail à distance ont révolutionné le fonctionnement de la sécurité.

  • Équipe de direction

    Nos dirigeants sont déterminés à faciliter la réussite de nos clients.

  • Partenaires

    Nous collaborons avec des leaders de la sécurité pour vous aider à sécuriser votre transition vers le cloud.

Netskope permet l'avenir du travail.

En savoir plus
Curvy road through wooded area

Netskope redéfinit la sécurité du cloud, des données et des réseaux afin d'aider les entreprises à appliquer les principes Zero Trust pour protéger leurs données.

Plus d'informations
Switchback road atop a cliffside

Penseurs, concepteurs, rêveurs, innovateurs. Ensemble, nous fournissons le nec plus ultra des solutions de sécurité cloud afin d'aider nos clients à protéger leurs données et leurs collaborateurs.

Meet our team
Group of hikers scaling a snowy mountain

La stratégie de commercialisation de Netskope privilégie ses partenaires, ce qui leur permet de maximiser leur croissance et leur rentabilité, tout en transformant la sécurité des entreprises.

Plus d'informations
Group of diverse young professionals smiling
Blog Data Science In the Blink of AI — How Artificial Intelligence is Changing the Way Enterprises Protect Sensitive Data in Images
Jul 27 2020

In the Blink of AI — How Artificial Intelligence is Changing the Way Enterprises Protect Sensitive Data in Images

Co-authored by Yihua Liao and Yi Zhang

You have probably heard of how AI technology is used to recognize cats, dogs and humans in images, a task known as image classification. The same technology that identifies a cat or dog – can also identify sensitive data (such as identification cards and medical records) in images traversing your corporate network. In this blog post, we will show you how we use convolutional neural networks (CNN), transfer learning, and generative adversarial networks (GAN) to provide image data protection for Netskope’s enterprise customers. 

Image Data Security

Images represent over 25% of the corporate user traffic that goes through Netskope’s Data Loss Prevention (DLP) platform. Many of these images contain sensitive information, including customer or employee personally identifiable information (PII) (e.g., pictures of passports, driver’s licenses, and credit cards), screenshots of intellectual property, and confidential financial documents. By detecting sensitive information in images, documents, and application traffic flows, we help organizations comply with compliance regulations and protect their assets.

The traditional approach to identifying sensitive data in an image has been to use optical character recognition (OCR) to extract text out of the image. The extracted text is then used for pattern matching. This technology, though effective, is resource-intensive and delays detection of security violations. OCR also has difficulties identifying violations in low-quality images. In many cases, we only need to determine the classification of the input image. For example, we would like to find out whether an image is a credit card or not, without knowing the 16-digit card number and other details in the image. Machine learning-based image classification is an ideal choice for that because of its accuracy, speed and ability to work inline with granular policy controls. We can also combine image classification with OCR to generate more detailed violation alerts. 

CNN and Transfer Learning

Deep learning and convolutional neural networks (CNN) were a huge breakthrough in image classification in the early 2010s. Since then, CNN-based image classification has been applied to many different domains, including medicine, autonomous vehicles, and security, with accuracy close to that of humans. Inspired by how the human visual cortex works, a CNN is able to effectively capture the shapes, objects and other qualities to better understand the contents of the image. A typical CNN has two parts (depicted in the chart below):

  • The convolutional base, which consists of a stack of convolutional and pooling layers. The main goal of the convolutional base is to generate features from the image. It builds progressively higher-level features out of an input image. The early layers refer to general features, such as edges, lines, and dots in the image. Meanwhile, the latter layers refer to task-specific features, which are more human interpretable,  such as the logo on a credit card, or application windows in a screenshot. 
  • The classifier, which is usually composed of fully connected layers. Think of the classifier as a machine that sorts the features identified in the convolutional base. The classifier will tell you if the features identified are a cat, dog, drivers license, or X-ray.
Diagram of CNN and transfer learning
Image Source: DOI: 10.3390/electronics8030292

You may need millions of labeled images to train a CNN from scratch in order to achieve state-of-the-art classification accuracy. It is not trivial to collect a large number of images with proper labels, especially when you are dealing with sensitive data such as passports and credit cards. Fortunately, we can use transfer learning, a popular deep learning technique, to train a neural network with just hundreds or thousands of training samples. With transfer learning, we can leverage an existing convolutional neural network (e.g., ResNet or MobileNet) that was trained on a large dataset to classify other objects, and tweak it to train with additional images. Transfer learning allows us to train a CNN image classifier with a limited dataset and still achieve good performance while significantly reducing the training time.

Synthetic Training Data Generation

It’s very challenging to acquire real images for the sensitive categories we are interested in. To increase the amount and diversity of the training dataset and further improve the accuracy of CNN classifiers, we use generative adversarial networks (GAN) to generate synthetic training data. The basic idea of a GAN is to create two neural networks (high-level architecture diagram below), which compete against each other. One neural network, called the generator, generates fake data, while the other, the discriminator, evaluates them for authenticity. The goal is to generate data that is similar to the training data and fool the discriminator.

Diagram of GAN
Image Source: Deep Convolutional Generative Adversarial Networks

With a GAN, we are able to synthesize photorealistic images with varying degrees of change in rotation, color, blurring, background, and so on. Here are a few examples of the synthetic images:

Examples of synthetic images

Netskope’s Inline DLP Image Classifiers

At Netskope, we have developed CNN-based image classifiers, as part of our Next Gen SWG and cloud inline solutions covering managed apps, unmanaged apps, custom apps, and public cloud service user traffic. The classifiers are able to accurately identify images with sensitive information, including passports, driver’s licenses, US social security cards, credit cards and debit cards, fullscreen and application screenshots, etc. The inline classifiers provide granular policy controls in real-time.

Examples of passports, drivers licenses, social security numbers, and credit/debit cards
Screenshots of examples

Future Work

At Netskope, we are actively expanding our portfolio of inline image classifiers with the latest computer vision technology. We also have the capability to train custom classifiers and identify new types of images that our customers are interested in classifying. If your organization has unique assets that may be shared in images and you’d like to protect those assets, please contact us at [email protected] to learn more.

author image
About the author
Dr. Yihua Liao is the Director of Data Science at Netskope. His team Develops cutting-edge AI/ML technology to tackle many challenging problems in cloud security, including data loss prevention, malware and threat protection, and user/entity behavior analytics. Previously, he led data science teams at Uber and Facebook.
Dr. Yihua Liao is the Director of Data Science at Netskope. His team Develops cutting-edge AI/ML technology to tackle many challenging problems in cloud security, including data loss prevention, malware and threat protection, and user/entity behavior analytics. Previously, he led data science teams at Uber and Facebook.