cerrar
cerrar
Su red del mañana
Su red del mañana
Planifique su camino hacia una red más rápida, más segura y más resistente diseñada para las aplicaciones y los usuarios a los que da soporte.
          Descubra Netskope
          Get Hands-on With the Netskope Platform
          Here's your chance to experience the Netskope One single-cloud platform first-hand. Sign up for self-paced, hands-on labs, join us for monthly live product demos, take a free test drive of Netskope Private Access, or join us for a live, instructor-led workshops.
            Líder en SSE. Ahora es líder en SASE de un solo proveedor.
            Líder en SSE. Ahora es líder en SASE de un solo proveedor.
            Netskope debuta como Líder en el Cuadrante Mágico™ de Gartner® para Single-Vendor SASE
              Protección de la IA generativa para principiantes
              Protección de la IA generativa para principiantes
              Learn how your organization can balance the innovative potential of generative AI with robust data security practices.
                Modern data loss prevention (DLP) for Dummies eBook
                Prevención moderna de pérdida de datos (DLP) para Dummies
                Get tips and tricks for transitioning to a cloud-delivered DLP.
                  Libro SD-WAN moderno para principiantes de SASE
                  Modern SD-WAN for SASE Dummies
                  Deje de ponerse al día con su arquitectura de red
                    Entendiendo dónde está el riesgo
                    Advanced Analytics transforms the way security operations teams apply data-driven insights to implement better policies. With Advanced Analytics, you can identify trends, zero in on areas of concern and use the data to take action.
                        Los 6 casos de uso más convincentes para el reemplazo completo de VPN heredada
                        Los 6 casos de uso más convincentes para el reemplazo completo de VPN heredada
                        Netskope One Private Access is the only solution that allows you to retire your VPN for good.
                          Colgate-Palmolive Salvaguarda su "Propiedad Intelectual" con Protección de Datos Inteligente y Adaptable
                          Colgate-Palmolive Salvaguarda su "Propiedad Intelectual" con Protección de Datos Inteligente y Adaptable
                            Netskope GovCloud
                            Netskope logra la alta autorización FedRAMP
                            Elija Netskope GovCloud para acelerar la transformación de su agencia.
                              Let's Do Great Things Together
                              La estrategia de venta centrada en el partner de Netskope permite a nuestros canales maximizar su expansión y rentabilidad y, al mismo tiempo, transformar la seguridad de su empresa.
                                Soluciones Netskope
                                Netskope Cloud Exchange
                                Netskope Cloud Exchange (CE) provides customers with powerful integration tools to leverage investments across their security posture.
                                  Soporte técnico Netskope
                                  Soporte técnico Netskope
                                  Nuestros ingenieros de soporte cualificados ubicados en todo el mundo y con distintos ámbitos de conocimiento sobre seguridad en la nube, redes, virtualización, entrega de contenidos y desarrollo de software, garantizan una asistencia técnica de calidad en todo momento
                                    Vídeo de Netskope
                                    Netskope Training
                                    La formación de Netskope le ayudará a convertirse en un experto en seguridad en la nube. Estamos aquí para ayudarle a proteger su proceso de transformación digital y aprovechar al máximo sus aplicaciones cloud, web y privadas.

                                      En un abrir y cerrar de ojos de la IA - Cómo la Inteligencia Artificial está cambiando la forma en que las empresas protegen los datos sensibles en las imágenes

                                      27 de julio de 2020

                                      Artículo escrito conjuntamente por Yihua Liao y Yi Zhang

                                      Probablemente ha oído hablar de cómo la tecnología de IA se utiliza para reconocer gatos, perros y humanos en imágenes, una tarea conocida como clasificación de imágenes. La misma tecnología que identifica a un gato o un perro - también puede identificar datos sensibles (como tarjetas de identificación y registros médicos) en imágenes que atraviesan su red corporativa. En este artículo, le mostraremos cómo utilizamos las redes neuronales convolucionales (RNC), el aprendizaje por transferencia y las redes generativas antagónicas (RGAs) para proporcionar protección de datos de imágenes a los clientes corporativos de Netskope. 

                                      Seguridad de los datos en imágenes

                                      Las imágenes representan más del 25% del tráfico de usuarios corporativos que pasa por la plataforma de Prevención de Fuga de Datos (DLP) de Netskope. Muchas de estas imágenes contienen información sensible, incluyendo información personal (PII) de clientes o empleados (por ejemplo, fotos de pasaportes, licencias/carnets de conducir y tarjetas de crédito), capturas de pantalla de propiedad intelectual y documentos financieros confidenciales. Al detectar información sensible en imágenes, documentos y flujos de tráfico de aplicaciones, ayudamos a las organizaciones al cumplimiento normativo y a proteger sus activos.

                                      El enfoque tradicional para identificar datos sensibles en una imagen ha sido utilizar el reconocimiento óptico de caracteres (OCR) para extraer el texto de la imagen. El texto extraído se utiliza luego para la comparación de patrones. Esta tecnología, aunque eficaz, requiere muchos recursos y retrasa la detección de violaciones de la seguridad. El OCR también tiene dificultades para identificar violaciones en imágenes de baja calidad. En muchos casos, sólo necesitamos determinar la clasificación de la imagen de entrada. Por ejemplo, nos gustaría averiguar si una imagen es una tarjeta de crédito o no, sin saber el número de tarjeta de 16 dígitos y otros detalles de la imagen. La clasificación de imágenes basada en el aprendizaje automático es una opción ideal para ello debido a su precisión, velocidad y capacidad para trabajar en línea con controles granulares de políticas. También podemos combinar la clasificación de imágenes con el OCR para generar alertas de violación más detalladas. 

                                      RNC y el aprendizaje por transferencia

                                      El aprendizaje profundo y las redes neuronales convolucionales (RNC) fueron un gran avance en la clasificación de imágenes a principios de la década de 2010. Desde entonces, la clasificación de imágenes basada en las RNC se ha aplicado a muchos dominios diferentes, incluyendo la medicina, los vehículos autónomos y la seguridad, con una precisión cercana a la de los humanos. Inspirada en el funcionamiento de la corteza visual humana, una RNC es capaz de capturar eficazmente las formas, objetos y otras cualidades para comprender mejor el contenido de la imagen. Una RNC típica tiene dos partes (representadas en el gráfico de abajo):

                                      • La base convolucional, que consiste en una pila de capas convolucionales y de agrupamiento. El objetivo principal de la base convolucional es generar características de la imagen. Construye progresivamente características de nivel superior a partir de una imagen de entrada. Las primeras capas se refieren a características generales, como bordes, líneas y puntos en la imagen. Mientras tanto, las últimas capas se refieren a características específicas de la tarea, que son más interpretables por el ser humano, como el logotipo de una tarjeta de crédito, o las ventanas de la aplicación en una captura de pantalla. 
                                      • El clasificador, que suele estar compuesto de capas totalmente conectadas. Piense en el clasificador como una máquina que clasifica las características identificadas en la base convolucional. El clasificador le dirá si los rasgos identificados son un gato, un perro, una licencia/carné de conducir o una radiografía.
                                      Diagrama de CNN y transferencia de aprendizaje
                                      Fuente de la imagen: DOI: 10.3390/electronics8030292

                                      Puede que necesite millones de imágenes etiquetadas para entrenar a una RNC desde el principio para conseguir una precisión de clasificación de última generación. No es trivial recoger un gran número de imágenes con etiquetas adecuadas, especialmente cuando se trata de datos sensibles como pasaportes y tarjetas de crédito. Afortunadamente, podemos utilizar el aprendizaje por transferencia, una técnica popular de aprendizaje profundo, para entrenar una red neuronal con sólo cientos o miles de muestras de entrenamiento. Con el aprendizaje por transferencia, podemos aprovechar una red neural convolucional existente (por ejemplo, ResNet o MobileNet) que fue entrenada en un gran conjunto de datos para clasificar otros objetos, y ajustarla para entrenar con imágenes adicionales. El aprendizaje por transferencia nos permite entrenar un clasificador de imágenes de la RNC con un conjunto de datos limitado y aun así lograr un buen rendimiento mientras se reduce significativamente el tiempo de entrenamiento.

                                      Generación de datos sintéticos de entrenamiento

                                      Es muy difícil adquirir imágenes reales para categorías tan sensibles como las que nos interesan. Para aumentar la cantidad y diversidad del conjunto de datos de entrenamiento y mejorar aún más la precisión de los clasificadores de la RNC, utilizamos redes generativas antagónicas (RGAs) para generar datos sintéticos de entrenamiento. La idea básica de una RGA es crear dos redes neuronales que compiten entre sí (diagrama de arquitectura de alto nivel más abajo). Una red neuronal, llamada el generador, genera datos falsos, mientras que la otra, el discriminador, los evalúa en cuanto a su autenticidad. El objetivo es generar datos similares a los datos de entrenamiento y engañar al discriminador.

                                      Diagrama de GAN
                                      Fuente de la imagen: Redes Generativas Antagónicas Convolucionales Profundas

                                      Con una RGA, somos capaces de sintetizar imágenes fotorrealistas con diferentes grados de cambio en la rotación, color, desenfoque, fondo, etc. Aquí hay algunos ejemplos de las imágenes sintéticas:

                                      Ejemplos de las imágenes sintéticas

                                      Los clasificadores de imagen DLP en línea de Netskope

                                      En Netskope hemos desarrollado clasificadores de imagen basados en las RNCs, como parte de nuestro SWG de Nueva Generación y de nuestras soluciones en línea en la nube que cubren aplicaciones gestionadas, aplicaciones no gestionadas, aplicaciones personalizadas y tráfico de usuarios de servicios en nube pública. Los clasificadores son capaces de identificar con precisión imágenes con información sensible, incluyendo pasaportes, licencias/carnets de conducir, tarjetas de seguridad social de EE.UU., tarjetas de crédito y tarjetas de débito, capturas de pantalla a pantalla completa y de aplicaciones, etc. Los clasificadores en línea proporcionan controles granulares de políticas en tiempo real.

                                      Ejemplos de pasaportes, licencias de conducir, números de seguro social y tarjetas de crédito/débito
                                      Capturas de pantalla de ejemplos

                                      Trabajos futuros

                                      En Netskope, estamos ampliando activamente nuestro portfolio de clasificadores de imagen en línea con la última tecnología de visión artificial. También tenemos la capacidad de entrenar clasificadores personalizados e identificar nuevos tipos de imágenes que nuestros clientes están interesados en clasificar. Si su organización tiene activos específicos que pueden ser compartidos en imágenes y le gustaría proteger esos activos, póngase en contacto con nosotros en [email protected] para obtener más información

                                      author image
                                      Yihua Liao
                                      El Dr. Yihua Liao es el Jefe de AI Labs en Netskope. Su equipo desarrolla tecnología de IA/ML de vanguardia para abordar muchos problemas desafiantes en la seguridad en la nube.
                                      El Dr. Yihua Liao es el Jefe de AI Labs en Netskope. Su equipo desarrolla tecnología de IA/ML de vanguardia para abordar muchos problemas desafiantes en la seguridad en la nube.

                                      ¡Mantente informado!

                                      Suscríbase para recibir lo último del blog de Netskope