A Netskope foi nomeada Líder no Quadrante Mágico do Gartner™ de 2022 para Security Service Edge. Obtenha o Relatório

  • Produtos

    Os produtos Netskope são construídos na Netskope Security Cloud.

  • Plataforma

    Visibilidade incomparável e proteção de dados e contra ameaças em tempo real na maior nuvem privada de segurança do mundo.

Netskope é nomeada Líder no Relatório do Quadrante Mágico™ do Gartner de 2022 para SSE

Obtenha o Relatório Vá para a plataforma
Netskope gartner mq 2022 sse leader

A Netskope oferece uma pilha de segurança na nuvem moderna, com capacidade unificada para proteção de dados e ameaças, além de acesso privado seguro.

Explore a nossa plataforma
Birds eye view metropolitan city

Mude para serviços de segurança na nuvem líderes de mercado com latência mínima e alta confiabilidade.

Saiba mais
Lighted highway through mountainside switchbacks

Previna ameaças que muitas vezes contornam outras soluções de segurança usando uma estrutura SSE de passagem única.

Saiba mais
Lighting storm over metropolitan area

Soluções de zero trust para a implementação de SSE e SASE

Saiba mais
Boat driving through open sea

A Netskope permite uma jornada segura, inteligente e rápida para a adoção de serviços em nuvem, aplicações e infraestrutura de nuvem pública.

Saiba mais
Wind turbines along cliffside
  • Nossos clientes

    Netskope atende a mais de 2.000 clientes em todo o mundo, incluindo mais de 25 dos 100 da Fortune.

  • Customer Solutions

    We are here for you and with you every step of the way, ensuring your success with Netskope.

  • Treinamento e certificação

    Os treinamentos da Netskope vão ajudar você a ser um especialista em segurança na nuvem.

Ajudamos nossos clientes a estarem prontos para tudo

Ver nossos clientes
Woman smiling with glasses looking out window

A talentosa e experiente equipe de Serviços Profissionais da Netskope fornece uma abordagem prescritiva para sua implementação bem sucedida.

Saiba mais
Netskope Professional Services

Proteja sua jornada de transformação digital e aproveite ao máximo seus aplicativos de nuvem, web e privados com o treinamento da Netskope.

Saiba mais
Group of young professionals working
  • Recursos

    Saiba mais sobre como a Netskope pode ajudá-lo a proteger sua jornada para a nuvem.

  • Blog

    Saiba como a Netskope viabiliza a segurança e a transformação de redes através do security service edge (SSE).

  • Eventos e workshops

    Esteja atualizado sobre as últimas tendências de segurança e conecte-se com seus pares.

  • Security Defined

    Tudo o que você precisa saber em nossa enciclopédia de segurança cibernética.

Podcast Security Visionaries

Episode 14: Enabling Security from the Top-Down

Reproduzir o podcast
Black man sitting in conference meeting

Leia as últimas novidades sobre como a Netskope pode viabilizar a jornada Zero Trust e SASE por meio dos recursos do security service edge (SSE).

Leia o Blog
Sunrise and cloudy sky

SASE Week

Netskope is positioned to help you begin your journey and discover where Security, Networking, and Zero Trust fit in the SASE world.

Saiba mais
SASE Week

O que é o Security Service Edge?

Explore o lado de segurança de SASE, o futuro da rede e proteção na nuvem.

Saiba mais
Four-way roundabout
  • Empresa

    Ajudamos você a antecipar os desafios da nuvem, dos dados e da segurança da rede.

  • Por que Netskope

    A transformação da nuvem e o trabalho em qualquer lugar mudaram a forma como a segurança precisa funcionar.

  • Liderança

    Nossa equipe de liderança está fortemente comprometida em fazer tudo o que for preciso para tornar nossos clientes bem-sucedidos.

  • Parceiros

    Fazemos parceria com líderes de segurança para ajudá-lo a proteger sua jornada para a nuvem.

A Netskope possibilita o futuro do trabalho.

Saiba mais
Curvy road through wooded area

A Netskope está redefinindo a nuvem, os dados e a segurança da rede para ajudar as organizações a aplicar os princípios de Zero Trust para proteger os dados.

Saiba mais
Switchback road atop a cliffside

Pensadores, construtores, sonhadores, inovadores. Juntos, fornecemos soluções de segurança na nuvem de última geração para ajudar nossos clientes a proteger seus dados e seu pessoal.

Meet our team
Group of hikers scaling a snowy mountain

A estratégia de comercialização da Netskope, focada em Parcerias, permite que nossos Parceiros maximizem seu crescimento e lucratividade enquanto transformam a segurança corporativa.

Saiba mais
Group of diverse young professionals smiling

Detecting Ransomware Using Machine Learning

Nov 23 2022

Co-authored by Yihua Liao, Ari Azarafrooz, and Yi Zhang

Ransomware attacks are on the rise. Many organizations have fallen victim to ransomware attacks. While there are different forms of ransomware, it typically involves the attacker breaching an organization’s network, encrypting a large amount of the organization’s files, which usually contain sensitive information, exfiltrating the encrypted files, and demanding a ransom. Therefore, a sudden increase of encrypted data movement in the corporate network traffic can be a strong indication of ransomware infection. To effectively detect such behavior patterns, at Netskope, we have developed the capability to detect encrypted files using machine learning (ML) and generate encrypted data movement alerts as part of Advanced UEBA (user and entity behavior analytics). This has helped our customers to identify ransomware attacks as they unfold in their network. One example is to detect ransomware on unmanaged devices. In this blog post, we will explain the technology behind encrypted file detection and Advanced UEBA, which is part of a pending patent application.  

ML-based encrypted file detection

The sequence of bytes in an encrypted file tends to be more random than unencrypted files, which is often manifested in some statistical measures of randomness and information density in the file. Therefore, these statistical tests can be helpful in determining whether a file is encrypted or not. We have explored various statistical tests, including:

  • Chi-square Test
  • Entropy
  • Arithmetic Mean
  • Monte Carlo Value for Pi
  • Serial Correlation Coefficient   

However, our analysis shows that using any of these statistical tests alone is not sufficient to identify encrypted files and can generate excessive false positives. For example, some compressed files also look random according to some of these tests.

To reduce the false positives from individual statistical tests, we developed a classification ML model to classify whether a file is encrypted or not. The model takes all of the statistical tests and other characteristics of the file as input features, based on millions of real and synthetic files of different file types. The model uses LightGBM, a decision tree-like ML algorithm, to automatically learn the difference between encrypted files and unencrypted files. In our experiments, the ML model was able to achieve good accuracy with low false positives.

UEBA alerts

The encrypted file classification ML model determines whether an individual file is encrypted or not. In a ransomware attack, there are usually hundreds or thousands of encrypted files involved. To further reduce false positives and help our customers identify the user accounts that were involved, we use Advanced UEBA to generate user-level alerts to flag users with anomalous encrypted data movements that are indicative of ransomware attacks.

The goal of behavior analytics is to detect anomalous user behavior that indicates potential threats such as malicious insiders, compromised accounts, data exfiltration, ransomware, and other threats, through machine learning and statistical analysis. The figure below shows examples of ransomware detection policies in Advanced UEBA.

In the case of ransomware attacks, an infected user may upload a large number of encrypted files to a managed cloud app. This can be deemed anomalous and highly unlikely when compared to the normal behavior profile of the same user, their peer groups, and all other users in the same organization. This is illustrated in the figure below. As a result, an UEBA alert is generated for this user.

Netskope UEBA uses a scoring metric, User Confidence Index (UCI), to holistically evaluate the riskiness of users. The UCI Score helps security administrators easily identify the top risky users and take remediation actions based on the score. 

UCI is calculated based on all the alerts associated with a user that occurred in the past, weighted by the severity and abnormality of the alerts, as well as the time decay factor. UCI ranges from 0 to 1000, the higher the score, the less risky the user. In the UCI dashboard, users are rank-ordered by the UCI score so that it’s easy for security administrators to view the riskiest users. As part of the adaptive access control feature, security administrators can configure policies based on the UCI score to block or alert the user’s access or activities. Below is an example of a user’s confidence score drop due to the ransomware infection, indicated by the uploads of encrypted files with ransomware extensions to a managed cloud app.

Netskope’s Advanced UEBA has more than 100 detections for insiders, compromised accounts, and devices. As threat patterns change over time, we will add more detection capabilities to make Advanced UEBA more powerful. Please visit here to learn more about Netskope’s Advanced UEBA.

author image
Yihua Liao
Dr. Yihua Liao is the Director of Data Science at Netskope. His team Develops cutting-edge AI/ML technology to tackle many challenging problems in cloud security, including data loss prevention, malware and threat protection, and user/entity behavior analytics. Previously, he led data science teams at Uber and Facebook.