Netskope est à nouveau reconnu comme leader dans le Magic Quadrant de Gartner®™ pour les plates-formes SASE. Obtenir le rapport

fermer
fermer
Le réseau de demain
Le réseau de demain
Planifiez votre chemin vers un réseau plus rapide, plus sûr et plus résilient, conçu pour les applications et les utilisateurs que vous prenez en charge.
Essayez Netskope
Mettez la main à la pâte avec la plateforme Netskope
C'est l'occasion de découvrir la plateforme Netskope One single-cloud de première main. Inscrivez-vous à des laboratoires pratiques à votre rythme, rejoignez-nous pour des démonstrations mensuelles de produits en direct, faites un essai gratuit de Netskope Private Access ou participez à des ateliers dirigés par un instructeur.
Un leader sur SSE. Désormais leader en matière de SASE à fournisseur unique.
Netskope est reconnu comme le leader le plus avancé dans sa vision pour les plateformes SSE et SASE.
2X est un leader dans le Magic Quadrant de Gartner® pour les plateformes SASE
Une plateforme unifiée conçue pour votre parcours
Sécuriser l’IA générative pour les nuls
Sécuriser l’IA générative pour les nuls
Découvrez comment votre organisation peut concilier le potentiel d'innovation de l'IA générative avec des pratiques robustes en matière de sécurité des données.
Prévention des pertes de données (DLP) pour les Nuls eBook
La prévention moderne des pertes de données (DLP) pour les Nuls
Obtenez des conseils et des astuces pour passer à un système de prévention des pertes de données (DLP) dans le nuage.
Réseau SD-WAN moderne avec SASE pour les nuls
SD-WAN moderne pour les nuls en SASE
Cessez de rattraper votre retard en matière d'architecture de réseau
Identification des risques
Advanced Analytics transforme la façon dont les équipes chargées des opérations de sécurité utilisent les données pour mettre en œuvre de meilleures politiques. Avec Advanced Analytics, vous pouvez identifier les tendances, cibler les domaines préoccupants et utiliser les données pour prendre des mesures.
Support technique de Netskope
Support technique de Netskope
Nos ingénieurs d'assistance qualifiés sont répartis dans le monde entier et possèdent des expériences diverses dans les domaines de la sécurité du cloud, des réseaux, de la virtualisation, de la diffusion de contenu et du développement de logiciels, afin de garantir une assistance technique rapide et de qualité
Vidéo Netskope
Formation Netskope
Grâce à Netskope, devenez un expert de la sécurité du cloud. Nous sommes là pour vous aider à achever votre transformation digitale en toute sécurité, pour que vous puissiez profiter pleinement de vos applications cloud, Web et privées.

Detecting Ransomware Using Machine Learning

Nov 23 2022

Co-authored by Yihua Liao, Ari Azarafrooz, and Yi Zhang

Ransomware attacks are on the rise. Many organizations have fallen victim to ransomware attacks. While there are different forms of ransomware, it typically involves the attacker breaching an organization’s network, encrypting a large amount of the organization’s files, which usually contain sensitive information, exfiltrating the encrypted files, and demanding a ransom. Therefore, a sudden increase of encrypted data movement in the corporate network traffic can be a strong indication of ransomware infection. To effectively detect such behavior patterns, at Netskope, we have developed the capability to detect encrypted files using machine learning (ML) and generate encrypted data movement alerts as part of Advanced UEBA (user and entity behavior analytics). This has helped our customers to identify ransomware attacks as they unfold in their network. One example is to detect ransomware on unmanaged devices. In this blog post, we will explain the technology behind encrypted file detection and Advanced UEBA, which is part of a pending patent application.  

ML-based encrypted file detection

The sequence of bytes in an encrypted file tends to be more random than unencrypted files, which is often manifested in some statistical measures of randomness and information density in the file. Therefore, these statistical tests can be helpful in determining whether a file is encrypted or not. We have explored various statistical tests, including:

  • Chi-square Test
  • Entropy
  • Arithmetic Mean
  • Monte Carlo Value for Pi
  • Serial Correlation Coefficient   

However, our analysis shows that using any of these statistical tests alone is not sufficient to identify encrypted files and can generate excessive false positives. For example, some compressed files also look random according to some of these tests.

To reduce the false positives from individual statistical tests, we developed a classification ML model to classify whether a file is encrypted or not. The model takes all of the statistical tests and other characteristics of the file as input features, based on millions of real and synthetic files of different file types. The model uses LightGBM, a decision tree-like ML algorithm, to automatically learn the difference between encrypted files and unencrypted files. In our experiments, the ML model was able to achieve good accuracy with low false positives.

UEBA alerts

The encrypted file classification ML model determines whether an individual file is encrypted or not. In a ransomware attack, there are usually hundreds or thousands of encrypted files involved. To further reduce false positives and help our customers identify the user accounts that were involved, we use Advanced UEBA to generate user-level alerts to flag users with anomalous encrypted data movements that are indicative of ransomware attacks.

The goal of behavior analytics is to detect anomalous user behavior that indicates potential threats such as malicious insiders, compromised accounts, data exfiltration, ransomware, and other threats, through machine learning and statistical analysis. The figure below shows examples of ransomware detection policies in Advanced UEBA.

In the case of ransomware attacks, an infected user may upload a large number of encrypted files to a managed cloud app. This can be deemed anomalous and highly unlikely when compared to the normal behavior profile of the same user, their peer groups, and all other users in the same organization. This is illustrated in the figure below. As a result, an UEBA alert is generated for this user.

Netskope UEBA uses a scoring metric, User Confidence Index (UCI), to holistically evaluate the riskiness of users. The UCI Score helps security administrators easily identify the top risky users and take remediation actions based on the score. 

UCI is calculated based on all the alerts associated with a user that occurred in the past, weighted by the severity and abnormality of the alerts, as well as the time decay factor. UCI ranges from 0 to 1000, the higher the score, the less risky the user. In the UCI dashboard, users are rank-ordered by the UCI score so that it’s easy for security administrators to view the riskiest users. As part of the adaptive access control feature, security administrators can configure policies based on the UCI score to block or alert the user’s access or activities. Below is an example of a user’s confidence score drop due to the ransomware infection, indicated by the uploads of encrypted files with ransomware extensions to a managed cloud app.

Netskope’s Advanced UEBA has more than 100 detections for insiders, compromised accounts, and devices. As threat patterns change over time, we will add more detection capabilities to make Advanced UEBA more powerful. Please visit here to learn more about Netskope’s Advanced UEBA.

author image
Yihua Liao
Dr. Yihua Liao is the Head of AI Labs at Netskope. His team develops cutting-edge AI/ML technology to tackle many challenging problems in cloud security.
Dr. Yihua Liao is the Head of AI Labs at Netskope. His team develops cutting-edge AI/ML technology to tackle many challenging problems in cloud security.
Connectez-vous avec Netskope

Subscribe to the Netskope Blog

Sign up to receive a roundup of the latest Netskope content delivered directly in your inbox every month.