Netskope est nommé un leader du Gartner® Magic Quadrant™ 2024 pour le Security Service Edge. Recevoir le rapport

fermer
fermer
  • Pourquoi Netskope signe chevron

    Changer la façon dont le réseau et la sécurité fonctionnent ensemble.

  • Nos clients signe chevron

    Netskope sert plus de 3 000 clients dans le monde entier, dont plus de 25 entreprises du classement Fortune 100

  • Nos partenaires signe chevron

    Nous collaborons avec des leaders de la sécurité pour vous aider à sécuriser votre transition vers le cloud.

La Capacité d'Exécution la plus élevée, une fois de plus.
La Vision la plus complète, une fois de plus.

Découvrez pourquoi le Magic Quadrant™ 2024 de Gartner® a désigné Netskope comme leader pour la sécurité en périphérie des services pour la troisième année consécutive.

Recevoir le rapport
Netskope Named a Leader in the 2024 Gartner® Magic Quadrant™ for Security Service Edge graphic for menu
Nous parons nos clients à l'avenir, quel qu'il soit

Voir nos clients
Woman smiling with glasses looking out window
La stratégie de commercialisation de Netskope privilégie ses partenaires, ce qui leur permet de maximiser leur croissance et leur rentabilité, tout en transformant la sécurité des entreprises.

En savoir plus sur les partenaires de Netskope
Group of diverse young professionals smiling
Votre réseau de demain

Planifiez votre chemin vers un réseau plus rapide, plus sûr et plus résilient, conçu pour les applications et les utilisateurs que vous prenez en charge.

Obtenir le livre blanc
Votre réseau de demain
Présentation de la plate-forme Netskope One

Netskope One est une plate-forme cloud native qui offre des services de sécurité et de mise en réseau convergents pour faciliter votre transformation SASE et Zero Trust.

En savoir plus sur Netskope One
Abstrait avec éclairage bleu
Adopter une architecture SASE (Secure Access Service Edge)

Netskope NewEdge est le nuage privé de sécurité le plus grand et le plus performant au monde. Il offre aux clients une couverture de service, des performances et une résilience inégalées.

Découvrez NewEdge
NewEdge
Netskope Cloud Exchange

Le Netskope Cloud Exchange (CE) fournit aux clients des outils d'intégration puissants pour optimiser les investissements dans l'ensemble de leur infrastructure de sécurité.

En savoir plus sur Cloud Exchange
Vidéo Netskope
La plateforme du futur est Netskope

Intelligent Security Service Edge (SSE), Cloud Access Security Broker (CASB), Cloud Firewall, Next Generation Secure Web Gateway (SWG), et Private Access for ZTNA intégrés nativement dans une solution unique pour aider chaque entreprise dans son cheminement vers l'architecture Secure Access Service Edge (SASE).

Présentation des produits
Vidéo Netskope
Next Gen SASE Branch est hybride - connectée, sécurisée et automatisée

Netskope Next Gen SASE Branch fait converger Context-Aware SASE Fabric, Zero-Trust Hybrid Security et SkopeAI-Powered Cloud Orchestrator dans une offre cloud unifiée, ouvrant la voie à une expérience de succursale entièrement modernisée pour l'entreprise sans frontières.

En savoir plus Next Gen SASE Branch
Personnes au bureau de l'espace ouvert
La conception d'une architecture SASE pour les nuls

Obtenez votre exemplaire gratuit du seul guide consacré à la conception d'une architecture SASE dont vous aurez jamais besoin.

Obtenir l'EBook
Optez pour les meilleurs services de sécurité cloud du marché, avec un temps de latence minimum et une fiabilité élevée.

Découvrez NewEdge
Lighted highway through mountainside switchbacks
Permettez en toute sécurité l'utilisation d'applications d'IA générative grâce au contrôle d'accès aux applications, à l'accompagnement des utilisateurs en temps réel et à une protection des données de premier ordre.

Découvrez comment nous sécurisons l'utilisation de l'IA générative
Autorisez ChatGPT et l’IA générative en toute sécurité
Solutions Zero Trust pour les déploiements du SSE et du SASE

En savoir plus sur la confiance zéro
Boat driving through open sea
Netskope obtient l'autorisation FedRAMP High Authorization

Choisissez Netskope GovCloud pour accélérer la transformation de votre agence.

En savoir plus sur Netskope GovCloud
Netskope GovCloud
  • Ressources signe chevron

    Découvrez comment Netskope peut vous aider à sécuriser votre migration vers le Cloud.

  • Blog signe chevron

    Découvrez comment Netskope permet la transformation de la sécurité et de la mise en réseau grâce à la périphérie des services de sécurité (SSE)

  • Événements et ateliers signe chevron

    Restez à l'affût des dernières tendances en matière de sécurité et créez des liens avec vos pairs.

  • Définition de la sécurité signe chevron

    Tout ce que vous devez savoir dans notre encyclopédie de la cybersécurité.

Podcast Security Visionaries

How to Use a Magic Quadrant and Other Industry Research
Dans cet épisode, Max Havey, Steve Riley et Mona Faulkner dissèquent le processus complexe de création d’un Magic Quadrant et pourquoi c’est bien plus qu’un simple graphique.

Écouter le podcast
Comment utiliser un Magic Quadrant et d’autres podcasts de recherche sur l’industrie
Derniers blogs

Découvrez comment Netskope peut faciliter la transition vers le Zero Trust et le SASE grâce aux fonctionnalités de sécurité en périphérie des services (SSE).

Lire le blog
Sunrise and cloudy sky
SASE Week 2023 : Votre voyage SASE commence maintenant !

Retrouvez les sessions de la quatrième édition annuelle de SASE Week.

Explorer les sessions
SASE Week 2023
Qu'est-ce que le Security Service Edge ?

Découvrez le côté sécurité de SASE, l'avenir du réseau et de la protection dans le cloud.

En savoir plus sur Security Service Edge
Four-way roundabout
  • Entreprise signe chevron

    Nous vous aidons à conserver une longueur d'avance sur les défis posés par le cloud, les données et les réseaux en matière de sécurité.

  • Équipe de direction signe chevron

    Nos dirigeants sont déterminés à faciliter la réussite de nos clients.

  • Solutions pour les clients signe chevron

    Nous sommes là pour vous et avec vous à chaque étape, pour assurer votre succès avec Netskope.

  • Formation et certification signe chevron

    Avec Netskope, devenez un expert de la sécurité du cloud.

Soutenir le développement durable par la sécurité des données

Netskope est fière de participer à Vision 2045 : une initiative visant à sensibiliser au rôle de l'industrie privée dans le développement durable.

En savoir plus
Soutenir le développement durable grâce à la sécurité des données
Penseurs, concepteurs, rêveurs, innovateurs. Ensemble, nous fournissons le nec plus ultra des solutions de sécurité cloud afin d'aider nos clients à protéger leurs données et leurs collaborateurs.

Rencontrez notre équipe
Group of hikers scaling a snowy mountain
L’équipe de services professionnels talentueuse et expérimentée de Netskope propose une approche prescriptive pour une mise en œuvre réussie.

En savoir plus sur les services professionnels
Services professionnels Netskope
Sécurisez votre parcours de transformation numérique et tirez le meilleur parti de vos applications cloud, Web et privées grâce à la formation Netskope.

En savoir plus sur les formations et les certifications
Group of young professionals working

Hive Ransomware: Actively Targeting Hospitals

Sep 10 2021

Summary

Most ransomware groups operating in the RaaS (Ransomware-as-a-Service) model have an internal code of ethics that includes avoiding breaching some specific sectors, such as hospitals or critical infrastructure, thus avoiding great harm to society and consequently drawing less attention from law enforcement. For example, the BlackMatter ransomware states they are not willing to attack hospitals, critical infrastructure, defense industry, non-profit companies, and oil and gas industry targets, having learned from the mistakes of other groups, such as DarkSide, who shut down its operations after the Colonial Pipeline attack.

However, this code of ethics is not always adopted by attackers, as is the case with Hive, a new family of ransomware discovered in June 2021. On August 15, 2021, Hive ransomware was responsible for an attack against the Memorial Health System, a non-profit integrated health system with three hospitals in Ohio and West Virginia (Marietta Memorial Hospital, Selby General Hospital, and Sistersville General Hospital), causing radiology exams and surgical cases to be canceled. According to the FBI, the group uses phishing emails with malicious attachments to gain access into networks, allowing the attackers to move laterally over the network to steal data and infect more machines.

HiveLeaks

In addition to encrypting files, Hive also steals sensitive data from networks, threatening to publish everything in their HiveLeak website, hosted on the deep web, which is a common practice among ransomware working in this double extortion scheme.

There are two websites maintained by the group, the first one is protected by username and password, accessible only by the victims who obtain the credentials in the ransom note.

Figure 01. Hive ransomware private website

Once authenticated, the victim can see:

  1. The name of the infected organization;
  2. A live chat, where the victim can interact with the attackers;
  3. A file upload system, where the victim can send files to the attackers;
  4. A link to Hive’s decryption software, if the ransom is paid by the victims.
Figure 02. Victim’s private website by Hive ransomware

The second website, “HiveLeaks,” is where the attackers publish data about their targets and is publicly accessible.

Figure 03. “HiveLeaks” logo.

For each target, you can see the name, a small description, the website, the revenue, and the number of employees at the company. Also, you can see two dates, when the files were encrypted and when the attack was made public. Curiously enough, there are also two social media buttons where you can share this information.

Figure 04. Information about the infected company on the “HiveLeaks” website.

If any data is published by the attackers, you will also find a link where the files can be downloaded. Hive uses common file-sharing services for this purpose, such as PrivatLab, AnonFiles, MEGA, UFile, SendSpace, and Exploit.in, as shown in Figure 05.

Figure 05. Links to download stolen data by Hive.

Memorial Health System Attack

The Hive ransomware infected the Memorial Health System (MHS) on August 15, 2021. The attackers claim to have stolen patient data including names, social security numbers, dates of birth, addresses and phone numbers, and medical histories for 200,000 patients, and an additional 1.2 TB of other data.

MHS tried to appeal to the attackers to provide the decrypter for free but ultimately ended up paying 1.8M, divided equally into two Bitcoin wallets. The attackers moved the Bitcoins to another wallet just a few minutes after the transaction was made by MHS.

Aside from the decryptor, the attackers also promise a security report, a file tree describing all stolen data, and the logs proving that they had erased everything from their servers.

Analysis

The ransomware was written in Go, an open-source programming language that allows cross-compilation, meaning that the same source code can be compiled to different OS, such as Linux, Windows, and macOS.

Although we have only seen Windows versions in the wild at this point, we have strong indications that the group is able to infect other systems such as Linux, as well as the Hypervisor ESXi, as we will demonstrate later in the analysis.

We have analyzed two different samples, being 32 and 64-bit Windows versions of the malware. Both of them are packed with UPX, which is an open-source executable packer.

Figure 06. Main Hive ransomware payload, packed with UPX.

The first thing we noticed is that both samples we analyzed had a command line interface (CLI), accepting parameters and also showing log messages throughout the malware execution.

The 64-bit sample accepts two parameters:

  • kill: Kill processes specified as value (case insensitive regex)
  • stop: Stop services specified as value (case insensitive regex)
Figure 07. Parameters accepted by the 64-bit sample of Hive.

On the other hand, the 32-bit sample offers three more options:

  • kill: Kill processes specified as value (case insensitive regex)
  • no-clean: Do not clean disk space (described later in this analysis)
  • skip: Files that the attacker doesn’t want to encrypt (case insensitive regex)
  • skip-before: Skips files created before the specified date.

stop: Stop services specified as value (case insensitive regex)

Figure 08. Parameters accepted by the 32-bit sample of Hive.

Aside from the parameters above, the attacker can also specify the path containing the files that need to be encrypted. If this path isn’t specified, the ransomware will list all the files in the machine, skipping the ones specified in the “-skip” and “-skip-before” parameters.

For analysis purposes, we have created a folder named “C:\to_encrypt”, containing three different pictures. Once executed, the ransomware starts printing out log messages throughout the whole encryption process.

Figure 09. 32-bit Hive ransomware execution.

The log messages show pretty much everything the malware is doing, however, let’s take a look at each one of the aspects being printed out.

Analyzing this 32-bit sample closely, we can see some of the function names parsed by the disassembler, from a package the attackers named as “google.com”, perhaps as an attempt to deceive the analyst.

Figure 10. 32-bit Hive function names.

First, the malware calls a function encryptor.NewApp().

Figure 11. “NewApp” Hive function.

Simply put, this function initializes some important data used by the ransomware, such as the primary key.

Figure 12. “NewApp” function flow.

The function keys.NewPrimaryKey() generates a 10 MB random key used in the encryption process.

Figure 13. 10 MB key generated by Hive.

Once the key is generated, the ransom note and a batch script are loaded into memory, which will be eventually saved to the disk during the process.

After this setup is completed, the ransomware calls a function named App.Run(), which starts the flow we saw in the log messages.

Figure 14. Hive “Run” function.

The first function called inside App.Run() is App.ExportKey().

Figure 15. “ExportKey” function.

This function is responsible for encrypting the 10 MB key generated by keys.NewPrimaryKey().

Figure 16. Main flow of “ExportKey” function.

Hive contains 100 public RSA keys embedded in the binary, which are used to encrypt the key generated previously. They are all parsed through the function ParsePKCS1PublicKey from the pkcs1.go library.

Figure 17. Hive ransomware loading public RSA keys.

The malware then encrypts the data using the EncryptOAEP function from the rsa.go library.

Figure 18. Hive encrypting the key using RSA.

The encrypted key is then saved into a file that ends with “.key.hive” extension (or “key.<random>” for the 64-bit version). This is the file that is eventually loaded by the decryptor to retrieve the encryption key used in the process.

Figure 19. Key file saved by Hive during the process.

After creating the encrypted key, the malware calls two functions named App.KillProcesses() and App.StopServices().


Figure 20. Hive functions to kill processes and stop services.

The name of these functions are self-explanatory, and the full list of default values for stopped processes and services can be found in our GitHub repository.

Next, Hive executes the functions App.RemoveItself() and App.RemoveShadowCopies().

Figure 21. Next two functions executed by the “Run”.

The first one is responsible for creating a batch script that was loaded into memory by the function encryptor.NewApp(). The purpose of this script is to delete the ransomware payload once this process is done.

Figure 27. Batch script created by Hive to delete the payload from disk
Figure 22. Batch script created by Hive to delete the payload from disk

The second function creates another batch script in disk that is responsible for deleting Windows Shadow Copies, to prevent any file restoration.

Figure 23. “shadow.bat” script created by the 32-bit Hive.

Here, we have a big difference between the two samples we have analyzed. Instead of creating a batch script, the 64-bit version we found uses several commands to delete not only the Windows Shadow Copies, but also to stop services, including Windows Defender.

Figure 24. Commands executed by the 64-bit Hive sample we analyzed.

The full list of commands executed by the 64-bit version can be found in our GitHub repository.

Next in the flow, we have two important functions:

Figure 30. “ScanFiles” and “EncryptFiles” functions of Hive.

App.ScanFiles() is responsible for fetching all the files that will be encrypted by the ransomware. Also, this function creates the ransom note in disk, which was already loaded in memory previously.

App.EncryptFiles() does exactly what the name describes. Within that function, the code is calling another two, respectively encryptFilesGroup() and EncryptFile(), loading the contents of the targeted file in memory, encrypting the data with what seems to be a custom algorithm created by Hive developers. Then, the encrypted file is written into disk, using the extension “.hive”.

Figure 26. Files encrypted by Hive ransomware.

Following the file encryption, we have another two functions executed by App.Run().

Figure 27. “EraseKey” and “Notify” functions.

The function App.EraseKey() accesses the memory location where the 10 MB primary key was stored by Hive and replaces all its bytes with random data.

Figure 28. Before and after the “EraseKey” function

App.Notify() creates the ransom note in disk, which is redundant since this file is also created by the function App.ScanFiles().

Last but not least, we have a curious function executed by the ransomware if the flag “-no-clean” wasn’t specified, named App.CleanSpace().

Figure 29. “CleanSpace” function.

Simply put, if executed, this code creates several files with 1GB+ each until the disk is full. Then, these newly created files are deleted.

Figure 30. Files created by the “CleanSpace” function.

Since Hive deletes files that have been encrypted, this process is likely performed to overwrite any bytes on disk that could potentially be restored to their original state, creating new files to replace deleted ones.

Figure 31. Disk space while the “CleanSpace” function is being executed.

Different from other ransomware families, Hive doesn’t change the user background, the only message available to the victim is the ransom note.

Figure 32. Hive ransom note.

According to the note, if the user deletes the file that has the “.key” extension, the data will be undecryptable, which leads us to the next part of this blog.

Decryptor

Hive provides decryptors for ESXi, Linux, and Windows (32 / 64-bit).

Figure 33. Hive ransomware decryptors for MHS.

Although we only found Windows versions of Hive in the wild, this is a strong indication that they have payloads for other systems, aligning with the fact that the whole code was built in Go language, which is multi-platform.

When it comes to the decryption process, the file first loads the encrypted key from disk, which is why the ransom note states that you can’t delete this file.

Figure 34. Hive decryption process

Once the key is loaded and decrypted, Hive scans all directories searching for encrypted files, and then proceeds with the decryption process.

Conclusion

Hive is yet another ransomware group that is likely operating in the RaaS model. However, the process used to encrypt the files is quite unusual. 

Usually, the encryption process implemented by ransomware in the wild is to generate a unique symmetric key for each file, that is eventually encrypted and stored along with the encrypted data, so it can be recovered later. Instead, Hive creates a unique key that is eventually encrypted and written into disk, making the decryption process irreversible if this file is deleted by accident. Furthermore, this ransomware contains functionalities that make the execution slow, such as “wiping” the disk until it’s full to avoid file restoration.

Regardless of these points, we consider Hive a dangerous threat, as it’s already causing damage to people and organizations, combined with the fact that the threat is multi-platform.

Protection

Netskope Threat Labs is actively monitoring this campaign and has ensured coverage for all known threat indicators and payloads. 

  • Netskope Threat Protection
    • Gen:Variant.Ransom.Hive.2
    • Trojan.GenericKD.37237769
  • Netskope Advanced Threat Protection provides proactive coverage against this threat.
    • Gen.Malware.Detect.By.StHeur indicates a sample that was detected using static analysis
    • Gen.Malware.Detect.By.Sandbox indicates a sample that was detected by our cloud sandbox

IOCs

SHA256

hive_x861e21c8e27a97de1796ca47a9613477cf7aec335a783469c5ca3a09d4f07db0ff
hive_x64321d0c4f1bbb44c53cd02186107a18b7a44c840a9a5f0a78bdac06868136b72c

A full list of IOCs is available in our Git repo.

author image
Gustavo Palazolo
Gustavo Palazolo is an expert in malware analysis, reverse engineering and security research, working many years in projects related to electronic fraud protection. He is currently working on the Netskope Research Team, discovering and analyzing new malware threats.

Stay informed!

Subscribe for the latest from the Netskope Blog