Netskope debuts as a Leader in the 2024 Gartner® Magic Quadrant™️ for Single-Vendor Secure Access Service Edge Get the report

close
close
  • Why Netskope chevron

    Changing the way networking and security work together.

  • Our Customers chevron

    Netskope serves more than 3,400 customers worldwide including more than 30 of the Fortune 100

  • Our Partners chevron

    We partner with security leaders to help you secure your journey to the cloud.

A Leader in SSE.
Now a Leader in Single-Vendor SASE.

Learn why Netskope debuted as a leader in the 2024 Gartner® Magic Quadrant™️ for Single-Vendor Secure Access Service Edge

Get the report
Customer Visionary Spotlights

Read how innovative customers are successfully navigating today’s changing networking & security landscape through the Netskope One platform.

Get the eBook
Customer Visionary Spotlights
Netskope’s partner-centric go-to-market strategy enables our partners to maximize their growth and profitability while transforming enterprise security.

Learn about Netskope Partners
Group of diverse young professionals smiling
Your Network of Tomorrow

Plan your path toward a faster, more secure, and more resilient network designed for the applications and users that you support.

Get the white paper
Your Network of Tomorrow
Introducing the Netskope One Platform

Netskope One is a cloud-native platform that offers converged security and networking services to enable your SASE and zero trust transformation.

Learn about Netskope One
Abstract with blue lighting
Embrace a Secure Access Service Edge (SASE) architecture

Netskope NewEdge is the world’s largest, highest-performing security private cloud and provides customers with unparalleled service coverage, performance and resilience.

Learn about NewEdge
NewEdge
Netskope Cloud Exchange

The Netskope Cloud Exchange (CE) provides customers with powerful integration tools to leverage investments across their security posture.

Learn about Cloud Exchange
Netskope video
The platform of the future is Netskope

Intelligent Security Service Edge (SSE), Cloud Access Security Broker (CASB), Cloud Firewall, Next Generation Secure Web Gateway (SWG), and Private Access for ZTNA built natively into a single solution to help every business on its journey to Secure Access Service Edge (SASE) architecture.

Go to Products Overview
Netskope video
Next Gen SASE Branch is hybrid — connected, secured, and automated

Netskope Next Gen SASE Branch converges Context-Aware SASE Fabric, Zero-Trust Hybrid Security, and SkopeAI-powered Cloud Orchestrator into a unified cloud offering, ushering in a fully modernized branch experience for the borderless enterprise.

Learn about Next Gen SASE Branch
People at the open space office
Designing a SASE Architecture For Dummies

Get your complimentary copy of the only guide to SASE design you’ll ever need.

Get the eBook
Make the move to market-leading cloud security services with minimal latency and high reliability.

Learn about NewEdge
Lighted highway through mountainside switchbacks
Safely enable the use of generative AI applications with application access control, real-time user coaching, and best-in-class data protection.

Learn how we secure generative AI use
Safely Enable ChatGPT and Generative AI
Zero trust solutions for SSE and SASE deployments

Learn about Zero Trust
Boat driving through open sea
Netskope achieves FedRAMP High Authorization

Choose Netskope GovCloud to accelerate your agency’s transformation.

Learn about Netskope GovCloud
Netskope GovCloud
  • Resources chevron

    Learn more about how Netskope can help you secure your journey to the cloud.

  • Blog chevron

    Learn how Netskope enables security and networking transformation through secure access service edge (SASE)

  • Events and Workshops chevron

    Stay ahead of the latest security trends and connect with your peers.

  • Security Defined chevron

    Everything you need to know in our cybersecurity encyclopedia.

Security Visionaries Podcast

Data Lakes, Security, & Innovation
Max Havey sits down with guest Troy Wilkinson, CISO at Interpublic Group (IPG), for a deep dive into the world of data lakes.

Play the podcast Browse all podcasts
Data Lakes, Security, & Innovation
Latest Blogs

Read how Netskope can enable the Zero Trust and SASE journey through secure access service edge (SASE) capabilities.

Read the blog
Sunrise and cloudy sky
SASE Week 2024

Learn how to navigate the latest advancements in SASE and Zero Trust and explore how these frameworks are adapting to address cybersecurity and infrastructure challenges

Explore sessions
SASE Week 2024
What is SASE?

Learn about the future convergence of networking and security tools in today’s cloud dominant business model.

Learn about SASE
  • Company chevron

    We help you stay ahead of cloud, data, and network security challenges.

  • Customer Solutions chevron

    We are here for you and with you every step of the way, ensuring your success with Netskope.

  • Training and Accreditations chevron

    Netskope training will help you become a cloud security expert.

Supporting sustainability through data security

Netskope is proud to participate in Vision 2045: an initiative aimed to raise awareness on private industry’s role in sustainability.

Find out more
Supporting Sustainability Through Data Security
Netskope’s talented and experienced Professional Services team provides a prescriptive approach to your successful implementation.

Learn about Professional Services
Netskope Professional Services
Secure your digital transformation journey and make the most of your cloud, web, and private applications with Netskope training.

Learn about Training and Certifications
Group of young professionals working

Hive Ransomware: Actively Targeting Hospitals

Sep 10 2021

Summary

Most ransomware groups operating in the RaaS (Ransomware-as-a-Service) model have an internal code of ethics that includes avoiding breaching some specific sectors, such as hospitals or critical infrastructure, thus avoiding great harm to society and consequently drawing less attention from law enforcement. For example, the BlackMatter ransomware states they are not willing to attack hospitals, critical infrastructure, defense industry, non-profit companies, and oil and gas industry targets, having learned from the mistakes of other groups, such as DarkSide, who shut down its operations after the Colonial Pipeline attack.

However, this code of ethics is not always adopted by attackers, as is the case with Hive, a new family of ransomware discovered in June 2021. On August 15, 2021, Hive ransomware was responsible for an attack against the Memorial Health System, a non-profit integrated health system with three hospitals in Ohio and West Virginia (Marietta Memorial Hospital, Selby General Hospital, and Sistersville General Hospital), causing radiology exams and surgical cases to be canceled. According to the FBI, the group uses phishing emails with malicious attachments to gain access into networks, allowing the attackers to move laterally over the network to steal data and infect more machines.

HiveLeaks

In addition to encrypting files, Hive also steals sensitive data from networks, threatening to publish everything in their HiveLeak website, hosted on the deep web, which is a common practice among ransomware working in this double extortion scheme.

There are two websites maintained by the group, the first one is protected by username and password, accessible only by the victims who obtain the credentials in the ransom note.

Figure 01. Hive ransomware private website

Once authenticated, the victim can see:

  1. The name of the infected organization;
  2. A live chat, where the victim can interact with the attackers;
  3. A file upload system, where the victim can send files to the attackers;
  4. A link to Hive’s decryption software, if the ransom is paid by the victims.
Figure 02. Victim’s private website by Hive ransomware

The second website, “HiveLeaks,” is where the attackers publish data about their targets and is publicly accessible.

Figure 03. “HiveLeaks” logo.

For each target, you can see the name, a small description, the website, the revenue, and the number of employees at the company. Also, you can see two dates, when the files were encrypted and when the attack was made public. Curiously enough, there are also two social media buttons where you can share this information.

Figure 04. Information about the infected company on the “HiveLeaks” website.

If any data is published by the attackers, you will also find a link where the files can be downloaded. Hive uses common file-sharing services for this purpose, such as PrivatLab, AnonFiles, MEGA, UFile, SendSpace, and Exploit.in, as shown in Figure 05.

Figure 05. Links to download stolen data by Hive.

Memorial Health System Attack

The Hive ransomware infected the Memorial Health System (MHS) on August 15, 2021. The attackers claim to have stolen patient data including names, social security numbers, dates of birth, addresses and phone numbers, and medical histories for 200,000 patients, and an additional 1.2 TB of other data.

MHS tried to appeal to the attackers to provide the decrypter for free but ultimately ended up paying 1.8M, divided equally into two Bitcoin wallets. The attackers moved the Bitcoins to another wallet just a few minutes after the transaction was made by MHS.

Aside from the decryptor, the attackers also promise a security report, a file tree describing all stolen data, and the logs proving that they had erased everything from their servers.

Analysis

The ransomware was written in Go, an open-source programming language that allows cross-compilation, meaning that the same source code can be compiled to different OS, such as Linux, Windows, and macOS.

Although we have only seen Windows versions in the wild at this point, we have strong indications that the group is able to infect other systems such as Linux, as well as the Hypervisor ESXi, as we will demonstrate later in the analysis.

We have analyzed two different samples, being 32 and 64-bit Windows versions of the malware. Both of them are packed with UPX, which is an open-source executable packer.

Figure 06. Main Hive ransomware payload, packed with UPX.

The first thing we noticed is that both samples we analyzed had a command line interface (CLI), accepting parameters and also showing log messages throughout the malware execution.

The 64-bit sample accepts two parameters:

  • kill: Kill processes specified as value (case insensitive regex)
  • stop: Stop services specified as value (case insensitive regex)
Figure 07. Parameters accepted by the 64-bit sample of Hive.

On the other hand, the 32-bit sample offers three more options:

  • kill: Kill processes specified as value (case insensitive regex)
  • no-clean: Do not clean disk space (described later in this analysis)
  • skip: Files that the attacker doesn’t want to encrypt (case insensitive regex)
  • skip-before: Skips files created before the specified date.

stop: Stop services specified as value (case insensitive regex)

Figure 08. Parameters accepted by the 32-bit sample of Hive.

Aside from the parameters above, the attacker can also specify the path containing the files that need to be encrypted. If this path isn’t specified, the ransomware will list all the files in the machine, skipping the ones specified in the “-skip” and “-skip-before” parameters.

For analysis purposes, we have created a folder named “C:\to_encrypt”, containing three different pictures. Once executed, the ransomware starts printing out log messages throughout the whole encryption process.

Figure 09. 32-bit Hive ransomware execution.

The log messages show pretty much everything the malware is doing, however, let’s take a look at each one of the aspects being printed out.

Analyzing this 32-bit sample closely, we can see some of the function names parsed by the disassembler, from a package the attackers named as “google.com”, perhaps as an attempt to deceive the analyst.

Figure 10. 32-bit Hive function names.

First, the malware calls a function encryptor.NewApp().

Figure 11. “NewApp” Hive function.

Simply put, this function initializes some important data used by the ransomware, such as the primary key.

Figure 12. “NewApp” function flow.

The function keys.NewPrimaryKey() generates a 10 MB random key used in the encryption process.

Figure 13. 10 MB key generated by Hive.

Once the key is generated, the ransom note and a batch script are loaded into memory, which will be eventually saved to the disk during the process.

After this setup is completed, the ransomware calls a function named App.Run(), which starts the flow we saw in the log messages.

Figure 14. Hive “Run” function.

The first function called inside App.Run() is App.ExportKey().

Figure 15. “ExportKey” function.

This function is responsible for encrypting the 10 MB key generated by keys.NewPrimaryKey().