Netskope nombrado Líder en el Cuadrante Mágico de Gartner® 2024™ para Security Service Edge. Obtenga el informe

cerrar
cerrar
  • Por qué Netskope chevron

    Cambiar la forma en que las redes y la seguridad trabajan juntas.

  • Nuestros clientes chevron

    Netskope atiende a más de 3.000 clientes en todo el mundo, entre ellos más de 25 de las 100 empresas de Fortune

  • Nuestros Partners chevron

    Nos asociamos con líderes en seguridad para ayudarlo a asegurar su viaje a la nube.

Aún más alto en ejecución.
Aún más lejos en visión.

Sepa por qué 2024 Gartner® Cuadrante Mágico™ nombró a Netskope Líder para Security Service Edge por tercer año consecutivo.

Obtenga el informe
Netskope Nombrado líder en el gráfico 2024 Gartner® Magic Quadrant™ for Security Service Edge para Menu
Ayudamos a nuestros clientes a estar preparados para cualquier situación

Ver nuestros clientes
Woman smiling with glasses looking out window
La estrategia de venta centrada en el partner de Netskope permite a nuestros canales maximizar su expansión y rentabilidad y, al mismo tiempo, transformar la seguridad de su empresa.

Más información sobre los socios de Netskope
Group of diverse young professionals smiling
Tu red del mañana

Planifique su camino hacia una red más rápida, más segura y más resistente diseñada para las aplicaciones y los usuarios a los que da soporte.

Obtenga el whitepaper
Tu red del mañana
Presentamos la Netskope One Plataforma

Netskope One es una Plataforma nativa en la nube que ofrece servicios convergentes de seguridad y redes para hacer posible su transformación SASE y de confianza cero.

Learn about Netskope One
Abstracto con iluminación azul
Adopte una arquitectura de borde de servicio de acceso seguro (SASE)

Netskope NewEdge es la nube privada de seguridad más grande y de mayor rendimiento del mundo y ofrece a los clientes una cobertura de servicio, un rendimiento y una resiliencia incomparables.

Más información sobre NewEdge
NewEdge
Netskope Cloud Exchange

Cloud Exchange (CE) de Netskope ofrece a sus clientes herramientas de integración eficaces para que saquen partido a su inversión en estrategias de seguridad.

Más información sobre Cloud Exchange
Vídeo de Netskope
  • Servicio de seguridad Productos Edge chevron

    Protéjase contra las amenazas avanzadas y en la nube y salvaguarde los datos en todos los vectores.

  • Borderless SD-WAN chevron

    Proporcione con confianza un acceso seguro y de alto rendimiento a cada usuario remoto, dispositivo, sitio y nube.

  • Secure Access Service Edge chevron

    Netskope One SASE proporciona una solución SASE nativa en la nube, totalmente convergente y de un único proveedor.

La plataforma del futuro es Netskope

Intelligent Security Service Edge (SSE), Cloud Access Security Broker (CASB), Cloud Firewall, Next Generation Secure Web Gateway (SWG) y Private Access for ZTNA integrados de forma nativa en una única solución para ayudar a todas las empresas en su camino hacia el Servicio de acceso seguro Arquitectura perimetral (SASE).

Todos los productos
Vídeo de Netskope
Next Gen SASE Branch es híbrida: conectada, segura y automatizada

Netskope Next Gen SASE Branch converge Context-Aware SASE Fabric, Zero-Trust Hybrid Security y SkopeAI-Powered Cloud Orchestrator en una oferta de nube unificada, marcando el comienzo de una experiencia de sucursal completamente modernizada para la empresa sin fronteras.

Obtenga más información sobre Next Gen SASE Branch
Personas en la oficina de espacios abiertos.
Diseño de una arquitectura SASE para Dummies

Obtenga un ejemplar gratuito del único manual que necesitará sobre diseño de una arquitectura SASE.

Obtenga el eBook
Cambie a los servicios de seguridad en la nube líderes del mercado con una latencia mínima y una alta fiabilidad.

Más información sobre NewEdge
Lighted highway through mountainside switchbacks
Habilite de forma segura el uso de aplicaciones de IA generativa con control de acceso a aplicaciones, capacitación de usuarios en tiempo real y la mejor protección de datos de su clase.

Descubra cómo aseguramos el uso generativo de IA
Habilite de forma segura ChatGPT y IA generativa
Soluciones de confianza cero para implementaciones de SSE y SASE

Más información sobre Confianza Cero
Boat driving through open sea
Netskope logra la alta autorización FedRAMP

Elija Netskope GovCloud para acelerar la transformación de su agencia.

Más información sobre Netskope GovCloud
Netskope GovCloud
  • Recursos chevron

    Obtenga más información sobre cómo Netskope puede ayudarle a proteger su viaje hacia la nube.

  • Blog chevron

    Descubra cómo Netskope permite la transformación de la seguridad y las redes a través del borde de servicio de seguridad (SSE)

  • Eventos y Talleres chevron

    Manténgase a la vanguardia de las últimas tendencias de seguridad y conéctese con sus pares.

  • Seguridad definida chevron

    Todo lo que necesitas saber en nuestra enciclopedia de ciberseguridad.

Podcast Security Visionaries

La intersección de Zero Trust y la seguridad nacional
On the latest episode of Security Visionaries, co-hosts Max Havey and Emily Wearmouth sit down for a conversation with guest Chase Cunningham (AKA Dr. Zero Trust) about zero trust and national security.

Reproducir el pódcast
La intersección de Zero Trust y la seguridad nacional
Últimos blogs

Lea cómo Netskope puede hacer posible el viaje hacia la Confianza Cero y SASE a través de las capacidades del borde de servicio de seguridad (SSE).

Lea el blog
Sunrise and cloudy sky
SASE Week 2023: ¡Su viaje SASE comienza ahora!

Sesiones de repetición de la cuarta SASE Week.

Explorar sesiones
SASE Week 2023
¿Qué es SASE?

Infórmese sobre la futura convergencia de las herramientas de red y seguridad en el modelo de negocio actual de la nube.

Conozca el SASE
  • Empresa chevron

    Le ayudamos a mantenerse a la vanguardia de los desafíos de seguridad de la nube, los datos y la red.

  • Liderazgo chevron

    Nuestro equipo de liderazgo está firmemente comprometido a hacer todo lo necesario para que nuestros clientes tengan éxito.

  • Soluciones para clientes chevron

    Le apoyamos en cada paso del camino, garantizando su éxito con Netskope.

  • Formación y certificación chevron

    La formación de Netskope le ayudará a convertirse en un experto en seguridad en la nube.

Apoyar la sostenibilidad a través de la seguridad de los datos

Netskope se enorgullece de participar en Vision 2045: una iniciativa destinada a crear conciencia sobre el papel de la industria privada en la sostenibilidad.

Descubra más
Apoyando la sustentabilidad a través de la seguridad de los datos
Pensadores, constructores, soñadores, innovadores. Juntos, ofrecemos soluciones de seguridad en la nube de vanguardia para ayudar a nuestros clientes a proteger sus datos y usuarios.

Conozca a nuestro equipo
Group of hikers scaling a snowy mountain
El talentoso y experimentado equipo de servicios profesionales de Netskope proporciona un enfoque prescriptivo para su exitosa implementación.

Más información sobre servicios profesionales
Servicios profesionales de Netskope
Asegure su viaje de transformación digital y aproveche al máximo sus aplicaciones en la nube, web y privadas con la capacitación de Netskope.

Infórmese sobre Capacitaciones y Certificaciones
Group of young professionals working

Train Your Own Classifier (TYOC) for Image Data Protection

May 30 2024

Introducción

Machine learning-based data loss prevention (DLP) file classifiers provide a fast and effective way to identify sensitive data in real-time, empowering organizations with granular, real-time DLP policy controls. Netskope Advanced DLP offers a wide range of predefined file classifiers, such as passports, driver’s licenses, checks, payment cards, screenshots, source code, tax forms, and business agreements. Although these predefined classifiers are remarkable in their own right, they are necessarily somewhat generic when considering the enormous diversity of sensitive data across different industries and organizations. To better address company-specific or industry-specific documents, including identity documents, HR files, or critical infrastructure images, Netskope has developed a novel patented approach that allows customers to train their own classifiers while maintaining data privacy. This innovation enables organizations to focus on protecting their most critical information.

This training process, known as Train Your Own Classifier (TYOC), is designed to be efficient, requiring neither a large amount of labeled data nor time-consuming training of a supervised classification model.This capability is made possible through the use of cutting-edge contrastive learning techniques. Customers can upload a small set of example images (approximately 20-30) to the Netskope Security Cloud. These examples are then used to extract important attributes and train a customized classifier using Netskope’s machine learning engine.

Once the custom classifier is trained, it is deployed into the customer’s own tenant to detect sensitive information anywhere they use Netskope DLP including email and Endpoint DLP. Importantly, the original samples are not retained and the trained classifier is not shared with any other customers, ensuring the protection of the customer’s sensitive data throughout the process.

Image Similarity and Contrastive Learning

TYOC solves a problem of image similarity by using techniques of contrastive learning.

Image similarity addresses the challenge of identifying images that resemble a reference image, even when there are minor differences in aspects such as color, orientation, cropping, and other characteristics. This process can be effectively managed using advanced contrastive learning techniques.

Contrastive learning is designed to extract meaningful representations by contrasting pairs of similar (positive) and dissimilar (negative) instances. It is based on the concept that similar instances should be positioned closer in a learned embedding space, whereas dissimilar instances should be placed further apart. Contrastive learning involves training image models through unsupervised learning by augmenting each image in a manner that preserves its semantic content. This augmentation includes operations such as random rotations, color distortions, and crops, ensuring that the cropped area remains a significant portion of the original image. These augmented samples are used to train a convolutional neural network (CNN)-based image encoder model. This encoder takes an image as input and produces a feature vector, also known as a representation or embedding.

Netskope TYOC combines a pre-trained image encoder built by Netskope with a small number of training images provided by a customer. The combination enables the Netskope security cloud to perform image similarity ranking on customer-relevant files with performance similar to what is achieved by built-in (predefined) file classifiers.

Training with Contrastive Learning

The encoder model learns to identify similarities between images by establishing that matched pairs of images, referred to as positive pairs, exhibit the highest similarity. Conversely, unmatched pairs or negative pairs – drawn from the remainder of the image dataset – are assigned the lowest similarity. We illustrate this concept through examples of positive and negative pairs below.

The image encoder, trained with contrastive learning, maps any image to a high-dimensional embedding for semantic hash, effectively capturing the semantic meaning of the image. The illustration below showcases the application of this pre-trained image encoder on the “Dogs & Muffins” dataset, which comprises eight images of dogs and eight images of muffins, all closely resembling one another in appearance. On the right, we present a three-dimensional projection of the high-dimensional embeddings generated for each image. This visualization clearly demonstrates the distinct segregation of the two categories within the embedding space, underscoring the encoder’s efficacy in capturing and differentiating the semantic essence of the images.

Using Train Your Own Classifier

By utilizing the pre-trained image encoder model, our system allows customers to upload their training or reference images for the purpose of training a bespoke classifier. For optimal performance, it is recommended to provide at least 20-30 reference images for each category. The image encoder processes these reference images, converting them into high-dimensional embeddings. To ensure privacy, the original images are deleted after encoding. These reference embeddings are then utilized to construct an Approximate Nearest Neighbors (ANN) index, which acts as the custom classifier.

During the inference phase, new images undergo encoding to generate embeddings using the same image encoder model. The ANN model then identifies the class label of the nearest reference embedding. If the distance to this nearest embedding falls below a predefined threshold, the image is assigned the corresponding predicted label from the reference embedding. If not, the image is categorized under the predicted label “other.”

Casos de Éxito

Access Cards

In this evaluation, we adopted the TYOC methodology for classifying Access Cards, as detailed below. Initially, our dataset comprised only three authentic (sample) examples, illustrated on the left side. To augment our training data, we generated 30 synthetic images. This augmentation involved substituting the portraits on the sample cards with a variety of random portraits, as depicted on the right side. Subsequently, we allocated 20 of these images for training the classifier, while the remaining 10, along with 1,000 randomly selected negative examples, were used for testing purposes. In the testing phase, the custom classifier demonstrated exceptional performance, achieving a recall or detection rate of 100% with the precision of 99.3%.

Handwritten Signatures

For this experiment, a public dataset of handwritten signatures was used. The dataset includes signatures of 64 individuals, with approximately 25 image instances for each name. Of these, around 10 images per name represent forgeries. All images were transformed into embeddings using the pre-trained image encoder, without any further retraining. For each individual, six embeddings were incorporated into Annoy as reference images, while the remaining approximately 20 embeddings per name served as test samples. When assessing the test images of signatures, they could be accurately matched to the corresponding name with an 87% accuracy, provided that forgeries were considered valid matches. If forgeries were excluded, the accuracy rate slightly decreased to 84%.

Privacy Concerns

Our pre-trained image encoder translates images into high-dimensional semantic embeddings – compact vector representations of an image’s essential meaning and its visually similar counterparts. As these embeddings contain semantic data, there is a theoretical risk that images could be partially or fully reconstructed from their embeddings, potentially compromising user privacy within our system.

To mitigate these concerns, we’ve conducted thorough experiments and found that while it is theoretically possible for images to be reconstructed from high-dimensional embeddings under extremely unlikely situations, the resulting versions would be of very low fidelity. This limitation significantly restricts the amount of recoverable information, providing a robust safeguard against potential privacy breaches.

As a worst case scenario, we attempt to reconstruct images from their high-dimensional TYOC embeddings using a generative AI model that has access to the TYOC encoder. Below are some of the results. Although it is highly unlikely that the model architecture, weight files, and actual image embeddings would be fully accessible, our reconstructions still exhibit very poor quality, failing to reproduce any fine details.

Resumen

Train Your Own Classifier is now generally available as part of Netskope’s Advanced DLP (screenshot below). To learn more about the industry’s most comprehensive and most advanced cloud DLP solution, please visit the Netskope Data Loss Prevention page.

author image
Jason Bryslawskyj
En Netskope, Jason ha estado desarrollando modelos de visión artificial para la prevención de pérdida de datos y la detección de phishing.
author image
Yihua Liao
El Dr. Yihua Liao es el responsable de los AI Labs en Netskope. Su equipo desarrolla tecnología IA/ML de vanguardia para abordar muchos problemas desafiantes en la seguridad en la nube, incluida la prevención de pérdida de datos, la protección contra malware y amenazas, y el análisis del comportamiento de usuarios/entidades. Anteriormente, dirigió equipos de ciencia de datos en Uber y Facebook.

Stay informed!

Subscribe for the latest from the Netskope Blog