Accélérez le déploiement de SASE grâce à la série "SASE Week Backstage". Explorer les sessions

fermer
fermer
  • Pourquoi Netskope signe chevron

    Changer la façon dont le réseau et la sécurité fonctionnent ensemble.

  • Nos clients signe chevron

    Netskope sert plus de 3 400 clients dans le monde, dont plus de 30 entreprises du Fortune 100

  • Nos partenaires signe chevron

    Nous collaborons avec des leaders de la sécurité pour vous aider à sécuriser votre transition vers le cloud.

Un Leader du SSE.
Et maintenant un Leader du SASE à fournisseur unique.

Découvrez pourquoi Netskope a été classé parmi les leaders de l'édition 2024 du Gartner® Magic Quadrant™️ pour le Secure Access Service Edge à fournisseur unique.

Recevoir le rapport
Pleins feux sur les clients visionnaires

Découvrez comment des clients innovants naviguent avec succès dans le paysage évolutif de la mise en réseau et de la sécurité d’aujourd’hui grâce à la plateforme Netskope One.

Obtenir l'EBook
Pleins feux sur les clients visionnaires
La stratégie de commercialisation de Netskope privilégie ses partenaires, ce qui leur permet de maximiser leur croissance et leur rentabilité, tout en transformant la sécurité des entreprises.

En savoir plus sur les partenaires de Netskope
Groupe de jeunes professionnels diversifiés souriant
Votre réseau de demain

Planifiez votre chemin vers un réseau plus rapide, plus sûr et plus résilient, conçu pour les applications et les utilisateurs que vous prenez en charge.

Obtenir le livre blanc
Votre réseau de demain
Présentation de la plate-forme Netskope One

Netskope One est une plate-forme cloud native qui offre des services de sécurité et de mise en réseau convergents pour faciliter votre transformation SASE et Zero Trust.

En savoir plus sur Netskope One
Abstrait avec éclairage bleu
Adopter une architecture SASE (Secure Access Service Edge)

Netskope NewEdge est le nuage privé de sécurité le plus grand et le plus performant au monde. Il offre aux clients une couverture de service, des performances et une résilience inégalées.

Découvrez NewEdge
NewEdge
Netskope Cloud Exchange

Le Netskope Cloud Exchange (CE) fournit aux clients des outils d'intégration puissants pour optimiser les investissements dans l'ensemble de leur infrastructure de sécurité.

En savoir plus sur Cloud Exchange
Aerial view of a city
La plateforme du futur est Netskope

Intelligent Security Service Edge (SSE), Cloud Access Security Broker (CASB), Cloud Firewall, Next Generation Secure Web Gateway (SWG), et Private Access for ZTNA intégrés nativement dans une solution unique pour aider chaque entreprise dans son cheminement vers l'architecture Secure Access Service Edge (SASE).

Présentation des produits
Vidéo Netskope
Next Gen SASE Branch est hybride - connectée, sécurisée et automatisée

Netskope Next Gen SASE Branch fait converger Context-Aware SASE Fabric, Zero-Trust Hybrid Security et SkopeAI-Powered Cloud Orchestrator dans une offre cloud unifiée, ouvrant la voie à une expérience de succursale entièrement modernisée pour l'entreprise sans frontières.

En savoir plus Next Gen SASE Branch
Personnes au bureau de l'espace ouvert
La conception d'une architecture SASE pour les nuls

Obtenez votre exemplaire gratuit du seul guide consacré à la conception d'une architecture SASE dont vous aurez jamais besoin.

Obtenir l'EBook
Optez pour les meilleurs services de sécurité cloud du marché, avec un temps de latence minimum et une fiabilité élevée.

Découvrez NewEdge
Autoroute éclairée traversant des lacets à flanc de montagne
Permettez en toute sécurité l'utilisation d'applications d'IA générative grâce au contrôle d'accès aux applications, à l'accompagnement des utilisateurs en temps réel et à une protection des données de premier ordre.

Découvrez comment nous sécurisons l'utilisation de l'IA générative
Autorisez ChatGPT et l’IA générative en toute sécurité
Solutions Zero Trust pour les déploiements du SSE et du SASE

En savoir plus sur la confiance zéro
Bateau roulant en pleine mer
Netskope obtient l'autorisation FedRAMP High Authorization

Choisissez Netskope GovCloud pour accélérer la transformation de votre agence.

En savoir plus sur Netskope GovCloud
Netskope GovCloud
  • Ressources signe chevron

    Découvrez comment Netskope peut vous aider à sécuriser votre migration vers le Cloud.

  • Blog signe chevron

    Découvrez comment Netskope permet la transformation de la sécurité et de la mise en réseau grâce à l'accès sécurisé à la périphérie des services (SASE).

  • Événements et ateliers signe chevron

    Restez à l'affût des dernières tendances en matière de sécurité et créez des liens avec vos pairs.

  • Définition de la sécurité signe chevron

    Tout ce que vous devez savoir dans notre encyclopédie de la cybersécurité.

Podcast Security Visionaries

L'avenir de la sécurité : Quantum, IA et changements macropolitiques
Emily Wearmouth et Max Havey s'entretiennent avec Sanjay Beri, PDG de Netskope, et Krishna Narayanaswamy, directeur technique, sur l'avenir de la sécurité.

Écouter le podcast Parcourir tous les podcasts
L'avenir de la sécurité : Quantum, IA et changements macropolitiques
Derniers blogs

Découvrez comment Netskope peut faciliter le parcours Zero Trust et SASE grâce à des capacités d'accès sécurisé à la périphérie des services (SASE).

Lire le blog
Lever de soleil et ciel nuageux
SASE Week 2024 A la demande

Apprenez à naviguer dans les dernières avancées en matière de SASE et de confiance zéro et découvrez comment ces cadres s'adaptent pour répondre aux défis de la cybersécurité et de l'infrastructure.

Explorer les sessions
SASE Week 2024
Qu'est-ce que SASE ?

Découvrez la future convergence des outils réseau et sécurité dans le modèle économique actuel, dominé par le cloud.

En savoir plus sur SASE
  • Entreprise signe chevron

    Nous vous aidons à conserver une longueur d'avance sur les défis posés par le cloud, les données et les réseaux en matière de sécurité.

  • Carrières signe chevron

    Join Netskope's 3,000+ amazing team members building the industry’s leading cloud-native security platform.

  • Solutions pour les clients signe chevron

    Nous sommes là pour vous et avec vous à chaque étape, pour assurer votre succès avec Netskope.

  • Formation et accréditations signe chevron

    Avec Netskope, devenez un expert de la sécurité du cloud.

Soutenir le développement durable par la sécurité des données

Netskope est fière de participer à Vision 2045 : une initiative visant à sensibiliser au rôle de l'industrie privée dans le développement durable.

En savoir plus
Soutenir le développement durable grâce à la sécurité des données
Contribuez à façonner l'avenir de la sécurité du cloud

At Netskope, founders and leaders work shoulder-to-shoulder with their colleagues, even the most renowned experts check their egos at the door, and the best ideas win.

Rejoignez l’équipe
Carrières chez Netskope
L’équipe de services professionnels talentueuse et expérimentée de Netskope propose une approche prescriptive pour une mise en œuvre réussie.

En savoir plus sur les services professionnels
Services professionnels Netskope
Sécurisez votre parcours de transformation numérique et tirez le meilleur parti de vos applications cloud, Web et privées grâce à la formation Netskope.

En savoir plus sur les formations et les certifications
Groupe de jeunes professionnels travaillant

Using Traceroute to Measure Network Latency and Packet Loss

Aug 31 2021

In this article, we explain the main concepts of Traceroute and how it can be used to measure network latency and packet loss. We also address the main limitations of such a tool that makes it unfit for accurate measurements.

What do you use Traceroute for?

Traceroute is a very useful tool for network monitoring and problems diagnostics. With traceroute you can:

  • discover the network path between a source and a destination
  • measure the network latency to reach each hop on the path
  • measure the packet loss at each hop

It is extremely useful to measure the network quality (congestions, …). It can also detect any network path variation that may occur through BGP peering/routing configuration changes.

How does Traceroute work?

The main principle of traceroute is shown hereunder:

The whole traceroute principle is based on the TTL (Time To Live) field of the IP packet header. This field is mainly used to avoid loops in networks, where packets could be routed indefinitely in a loop under certain circumstances. When a host sends a packet on a network, its initial TTL value is between generally 32 and 255, depending on the operating system used. Each time the packet hits a router and must be routed, the TTL value decreases by 1. When a packet with a TTL value of 1 hits a router, this latter cannot route the packet anymore (it would mean a TTL=0). So it drops the packet (to avoid potential looping problem). It also informs the source about this by sending a specific ICMP error message back to the source (ICMP error message “TTL Exceeded In Transit”).

So traceroute relies on the fact that routers will send this ICMP error message back to the source in case of a TTL value reaching 1. When performing a traceroute, this is what happens:

  1. The source sends a first IP packet with a TTL header field value of 1.
  2. The packet hits the first router in the network path. The router drops the packet due to this TTL value and sends an ICMP error message back to the source.
  3. The source has discovered the first router! So let’s go to the next one. For this, it sends a packet with a TTL value of 2.
  4. The packet hits the first router, is routed normally, and the TTL values is decreased by 1 (new TTL value = 1).
  5. The packet hits the second router in the path. The router drops it due to the TTL value of 1. Again an ICMP error message is sent back to the source, which discovers the second router in the path.
  6. … and so on up until the packet reaches the final destination.
  7. The type of message this final destination will send to the source depends on the specific traceroute implementation used (see next topic).

Different traceroute flavors

With traceroute, the IP packets are not sent as is. They are typically transported in a upper transport layer protocol like UDP, or directly in ICMP packets.

Traceroute in Windows

The standard Windows implementation of traceroute uses ICMP as protocol to send IP packets.

Let’s see how it works in practice:

These pictures show a Windows traceroute to google.com.

One line corresponds to a discovered router. By default, a Windows traceroute sends three packets per hop. You can see this through the 3 network latency values provided per line.

In this example, the packet has reached the destination after 7 consecutive hops. The last line (8) corresponds to the final destination itself.

Let’s now see in details what happened by using Wireshark. We analyze the fifth discovered router.

The left side screenshot shows that the source (192.168.1.31) sends an ICMP “Echo (ping) request” packet to the destination (216.58.208.110) with an IP header TTL field value of 5.

The right side screenshot shows the answer from the discovered intermediate router (91.183.245.122). This latter sends an ICMP error message “Time-to-live exceeded” back to the source. As additional data, it also sends back the packet that triggered this error message.

When the packet finally hits the destination, the packet does not have to be routed anymore. So the destination does not send any ICMP error message back to the source. This is shown hereunder.

At the left side, you can see that the source still sends ICMP packets with incremental IP field TTL value (8 in this case). Nevertheless, as the destination does not have to route the packet anymore, it does not care about the TTL value. Instead, it responds to the ICMP Echo request solicitation by sending an ICMP Echo reply back to the source.

Traceroute in Linux

The standard Linux traceroute uses UDP as transport protocol to send IP packets.

Let’s see how it works in practice:

Without looking at more details, this looks exactly the same as a Windows traceroute: 3 tests per TTL value providing the network latency to each routing hop, up to the destination.

Let’s see what exactly happened this time: