¡La inscripción ya está abierta para SASE Week 2023! Inscríbete en la lista de invitados.

  • Servicio de seguridad Productos Edge

    Protéjase contra las amenazas avanzadas y en la nube y salvaguarde los datos en todos los vectores.

  • Borderless SD-WAN

    Proporcione con confianza un acceso seguro y de alto rendimiento a cada usuario remoto, dispositivo, sitio y nube.

La plataforma del futuro es Netskope

Intelligent Security Service Edge (SSE), Cloud Access Security Broker (CASB), Cloud Firewall, Next Generation Secure Web Gateway (SWG) y Private Access for ZTNA integrados de forma nativa en una única solución para ayudar a todas las empresas en su camino hacia el Servicio de acceso seguro Arquitectura perimetral (SASE).

Todos los productos
Vídeo de Netskope
Borderless SD-WAN: el comienzo de la nueva era de la empresa sin fronteras

Netskope Borderless SD-WAN offers an architecture that converges zero trust principles and assured application performance to provide unprecedented secure, high-performance connectivity for every site, cloud, remote user, and IoT device.

Leer el artículo
Borderless SD-WAN
Adopte una arquitectura de borde de servicio de acceso seguro (SASE)

Netskope NewEdge es la nube privada de seguridad más grande y de mayor rendimiento del mundo y ofrece a los clientes una cobertura de servicio, un rendimiento y una resiliencia incomparables.

Más información sobre NewEdge
NewEdge
Tu red del mañana

Planifique su camino hacia una red más rápida, más segura y más resistente diseñada para las aplicaciones y los usuarios a los que da soporte.

Obtenga el whitepaper
Tu red del mañana
Netskope Cloud Exchange

Cloud Exchange (CE) de Netskope ofrece a sus clientes herramientas de integración eficaces para que saquen partido a su inversión en estrategias de seguridad.

Más información sobre Cloud Exchange
Vídeo de Netskope
Cambie a los servicios de seguridad en la nube líderes del mercado con una latencia mínima y una alta fiabilidad.

Más información sobre NewEdge
Lighted highway through mountainside switchbacks
Habilite de forma segura el uso de aplicaciones de IA generativa con control de acceso a aplicaciones, capacitación de usuarios en tiempo real y la mejor protección de datos de su clase.

Descubra cómo aseguramos el uso generativo de IA
Habilite de forma segura ChatGPT y IA generativa
Soluciones de confianza cero para implementaciones de SSE y SASE

Más información sobre Confianza Cero
Boat driving through open sea
Netskope hace posible un proceso seguro, rápido y con inteligencia cloud para la adopción de los servicios en la nube, las aplicaciones y la infraestructura de nube pública.

Más información sobre soluciones industriales
Wind turbines along cliffside
  • Recursos

    Obtenga más información sobre cómo Netskope puede ayudarle a proteger su viaje hacia la nube.

  • Blog

    Descubra cómo Netskope permite la transformación de la seguridad y las redes a través del servicio de seguridad (SSE).

  • Eventos & Workshops

    Manténgase a la vanguardia de las últimas tendencias de seguridad y conéctese con sus pares.

  • Seguridad definida

    Todo lo que necesitas saber en nuestra enciclopedia de ciberseguridad.

Podcast Security Visionaries

Leveling Up the SASE Conversation
Robert Arandjelovic and Gerry Plaza sit down to chat with Max Havey about how embracing a SASE journey can help bring networking and security teams closer together.

Reproducir el pódcast
Leveling Up the SASE Conversation
Últimos blogs

Cómo Netskope puede habilitar el viaje de Zero Trust y SASE a través de las capacidades del borde del servicio de seguridad (SSE).

Lea el blog
Sunrise and cloudy sky
SASE Week 2023: Your SASE journey starts now!

Únase a nosotros para la cuarta SASE Week anual, del 26 al 28 de septiembre.

Registrarse
SASE Week 2023
¿Qué es Security Service Edge (SSE)?

Explore el lado de la seguridad de SASE, el futuro de la red y la protección en la nube.

Más información sobre el servicio de seguridad perimetral
Four-way roundabout
  • Nuestros clientes

    Netskope da servicio a más de 2.000 clientes en todo el mundo, entre los que se encuentran más de 25 de las 100 empresas de Fortune

  • Soluciones para clientes

    Le apoyamos en cada paso del camino, garantizando su éxito con Netskope.

  • Comunidad de Netskope

    Aprenda de otros profesionales de redes, datos y seguridad.

  • Formación y certificación

    La formación de Netskope le ayudará a convertirse en un experto en seguridad en la nube.

Ayudamos a nuestros clientes a estar preparados para cualquier situación

Ver nuestros clientes
Woman smiling with glasses looking out window
El talentoso y experimentado equipo de servicios profesionales de Netskope proporciona un enfoque prescriptivo para su exitosa implementación.

Más información sobre servicios profesionales
Servicios profesionales de Netskope
La comunidad de Netskope puede ayudarlo a usted y a su equipo a obtener más valor de los productos y las prácticas.

Acceder a la Netskope Community
La comunidad de Netskope
Asegure su viaje de transformación digital y aproveche al máximo sus aplicaciones en la nube, web y privadas con la capacitación de Netskope.

Infórmese sobre Capacitaciones y Certificaciones
Group of young professionals working
  • Empresa

    Le ayudamos a mantenerse a la vanguardia de los desafíos de seguridad de la nube, los datos y la red.

  • Por qué Netskope

    La transformación de la nube y el trabajo desde cualquier lugar han cambiado la forma en que debe funcionar la seguridad.

  • Liderazgo

    Nuestro equipo de liderazgo está firmemente comprometido a hacer todo lo necesario para que nuestros clientes tengan éxito.

  • Partners

    Nos asociamos con líderes en seguridad para ayudarlo a asegurar su viaje a la nube.

Apoyar la sostenibilidad a través de la seguridad de los datos

Netskope se enorgullece de participar en Vision 2045: una iniciativa destinada a crear conciencia sobre el papel de la industria privada en la sostenibilidad.

Descubra más
Apoyando la sustentabilidad a través de la seguridad de los datos
La más Alta en Ejecución. Más Avanzada en Visión.

Netskope ha sido reconocido como Líder en el Gartner® Magic Quadrant™ de 2023 en SSE.

Obtenga el informe
Netskope ha sido reconocido como Líder en el Gartner® Magic Quadrant™ de 2023 en SSE.
Pensadores, constructores, soñadores, innovadores. Juntos, ofrecemos soluciones de seguridad en la nube de vanguardia para ayudar a nuestros clientes a proteger sus datos y usuarios.

Conozca a nuestro equipo
Group of hikers scaling a snowy mountain
La estrategia de venta centrada en el partner de Netskope permite a nuestros canales maximizar su expansión y rentabilidad y, al mismo tiempo, transformar la seguridad de su empresa.

Más información sobre los socios de Netskope
Group of diverse young professionals smiling

Comprender los riesgos de los ataques de inyección de instrucciones en ChatGPT y otros modelos lingüísticos

05 de junio de 2023

Resumen

Los modelos grandes de lenguaje (LLM), como ChatGPT, han ganado una gran popularidad por su capacidad para generar conversaciones similares a las humanas y ayudar a los usuarios con diversas tareas. Sin embargo, con su creciente uso, han surgido preocupaciones sobre posibles vulnerabilidades y riesgos de seguridad. Uno de ellos son los ataques de inyección de instrucciones, en los que actores malintencionados intentan manipular el comportamiento de los modelos lingüísticos mediante la creación estratégica de instrucciones de entrada. En este artículo, discutiremos el concepto de ataques de inyección de instrucciones, exploraremos sus implicaciones y esbozaremos algunas estrategias potenciales de mitigación.

¿Qué son los ataques de inyección de instrucciones?

En el contexto de los modelos lingüísticos como ChatGPT, un prompt es el texto inicial o la instrucción dada al modelo para generar una respuesta. La instrucción establece el contexto y sirve de guía para que el modelo genere una respuesta coherente y pertinente.

Los ataques de inyección de instrucciones consisten en crear instrucciones de entrada que manipulen el comportamiento del modelo para generar resultados sesgados, maliciosos o no deseados. Estos ataques explotan la flexibilidad inherente a los modelos lingüísticos, permitiendo a los adversarios influir en las respuestas del modelo modificando sutilmente las instrucciones de entrada o el contexto.

Implicaciones y riesgos

La inyección de instrucciones podría revelar las instrucciones previas de un modelo lingüístico y, en algunos casos, impedir que el modelo siga sus instrucciones originales. Esto permite a un usuario malintencionado eliminar las salvaguardas en torno a lo que el modelo está autorizado a hacer e incluso podría exponer información sensible. Algunos ejemplos de inyecciones de instrucciones para ChatGPT se publicaron aquí.

Los riesgos de este tipo de ataques incluyen los siguientes:

  1. Propagación de información errónea o desinformación: Al inyectar mensajes falsos o engañosos, los atacantes pueden manipular los modelos lingüísticos para generar información plausible pero inexacta. Esto puede conducir a la propagación de información errónea o desinformación, lo que puede tener graves implicaciones sociales.
  2. Generación de resultados sesgados: Los modelos lingüísticos se entrenan con grandes cantidades de datos de texto, que pueden contener sesgos. Los ataques de inyección de mensajes pueden aprovecharse de estos prejuicios creando mensajes que generen resultados sesgados, reforzando o amplificando los prejuicios existentes.
  3. Inquietud sobre la privacidad: A través de los ataques de inyección de instrucciones, los adversarios pueden intentar extraer información sensible del usuario o explotar las vulnerabilidades de privacidad presentes en el modelo lingüístico, lo que puede conducir a violaciones de la privacidad y al uso indebido de datos personales.
  4. Explotación de sistemas posteriores: Muchas aplicaciones y sistemas dependen de los resultados de salida de los modelos lingüísticos como entrada. Si las respuestas de los modelos lingüísticos se manipulan mediante ataques de inyección de instrucciones, los sistemas posteriores pueden verse comprometidos, lo que conlleva más riesgos para la seguridad.

Inversión del modelo

Un ejemplo de ataque de inyección de instrucciones es la "inversión de modelo", en la que un atacante intenta explotar el comportamiento de los modelos de aprendizaje automático para exponer datos confidenciales o sensibles.

La idea central de un ataque de inversión de modelo es aprovechar la información revelada por los resultados del modelo para reconstruir datos de entrenamiento privados u obtener información sensible. Mediante el diseño cuidadoso de las consultas y el análisis de las respuestas del modelo, los atacantes pueden reconstruir características, imágenes o incluso texto que se parezcan mucho a los datos de entrenamiento originales.

Las organizaciones que utilizan modelos de aprendizaje automático para procesar información confidencial se enfrentan al riesgo de fuga de datos confidenciales. Los atacantes pueden aplicar ingeniería inversa a secretos comerciales, propiedad intelectual o información confidencial aprovechando el comportamiento del modelo. También podría recuperarse información como historiales médicos o nombres y direcciones de clientes, aunque el modelo la haya anonimizado.

Estrategias de mitigación para desarrolladores

En el momento de escribir este artículo, no hay forma de prevenir completamente los ataques de inyección de instrucciones. Sin embargo, hay algunas estrategias de mitigación que deben ser consideradas por cualquier organización que quiera desarrollar aplicaciones con modelos de lenguaje:

  • Validación y filtrado de entrada: Implementar mecanismos estrictos de validación de entrada puede ayudar a identificar y filtrar instrucciones potencialmente maliciosas o dañinas. Esto puede implicar el análisis de la entrada en busca de patrones específicos o palabras clave asociadas a vectores de ataque conocidos. El uso del aprendizaje automático para validar las entradas es un enfoque emergente.
  • Pruebas adversarias: Someter periódicamente los modelos lingüísticos a pruebas adversarias puede ayudar a identificar vulnerabilidades y mejorar su solidez frente a los ataques de inyección de instrucciones. Se trata de crear y analizar entradas diseñadas específicamente para desencadenar comportamientos no deseados o explotar puntos débiles.
  • Formación de modelos y preprocesamiento de datos: Los desarrolladores deben intentar entrenar los modelos lingüísticos en conjuntos de datos diversos e imparciales, minimizando la presencia de sesgos inherentes. Un preprocesamiento cuidadoso de los datos y las técnicas de aumento pueden ayudar a reducir el riesgo de sesgos en los resultados de los modelos.

Estrategias de mitigación para los usuarios

No sólo es importante que los desarrolladores de modelos lingüísticos tengan en cuenta los riesgos de seguridad, sino también los consumidores. Algunas estrategias de mitigación para los usuarios son:

  • Bloqueo de tráfico no deseado: Una organización podría bloquear dominios relacionados con aplicaciones LLM que no se consideren seguras, o incluso bloquear el tráfico en el que se esté incluyendo información sensible.
  • Concienciación y educación de los usuarios: e debería educar a los usuarios sobre los riesgos asociados a los ataques de inyección de mensajes y animarlos a actuar con precaución mientras interactúan con los modelos lingüísticos. Las campañas de concienciación pueden ayudar a los usuarios a identificar posibles amenazas y evitar participar inadvertidamente en actividades maliciosas.

Conclusiones

Las organizaciones se apresuran a implantar modelos lingüísticos en sus productos. Aunque estos modelos ofrecen grandes ventajas en la experiencia del usuario, todos debemos tener en cuenta los riesgos de seguridad asociados a ellos.  

Deben implantarse y probarse controles mitigadores para garantizar el despliegue responsable y seguro de esta tecnología. En particular, los controles mitigadores en torno a la validación de entradas y las pruebas adversarias reducirán en gran medida el riesgo de exposición de datos sensibles a través de ataques de inyección de instrucciones.

Los usuarios de modelos de IA deben evitar enviar cualquier dato privado, sensible o de propiedad debido al riesgo de que pueda ser expuesto a terceros.

author image
Colin Estep
Colin Estep cuenta con 16 años de experiencia en software, con 11 años centrados en la seguridad de la información. Actualmente es investigador en Netskope, donde se centra en la seguridad para AWS y GCP.

Stay informed!

Subscribe for the latest from the Netskope Blog