fermer
fermer
Le réseau de demain
Le réseau de demain
Planifiez votre chemin vers un réseau plus rapide, plus sûr et plus résilient, conçu pour les applications et les utilisateurs que vous prenez en charge.
          Essayez Netskope
          Mettez la main à la pâte avec la plateforme Netskope
          C'est l'occasion de découvrir la plateforme Netskope One single-cloud de première main. Inscrivez-vous à des laboratoires pratiques à votre rythme, rejoignez-nous pour des démonstrations mensuelles de produits en direct, faites un essai gratuit de Netskope Private Access ou participez à des ateliers dirigés par un instructeur.
            Un leader sur SSE. Désormais leader en matière de SASE à fournisseur unique.
            Un leader sur SSE. Désormais leader en matière de SASE à fournisseur unique.
            Netskope fait ses débuts en tant que leader dans le Magic Quadrant™ de Gartner® pour le SASE à fournisseur unique.
              Sécuriser l’IA générative pour les nuls
              Sécuriser l’IA générative pour les nuls
              Découvrez comment votre organisation peut concilier le potentiel d'innovation de l'IA générative avec des pratiques robustes en matière de sécurité des données.
                Prévention des pertes de données (DLP) pour les Nuls eBook
                La prévention moderne des pertes de données (DLP) pour les Nuls
                Obtenez des conseils et des astuces pour passer à un système de prévention des pertes de données (DLP) dans le nuage.
                  Réseau SD-WAN moderne avec SASE pour les nuls
                  SD-WAN moderne pour les nuls en SASE
                  Cessez de rattraper votre retard en matière d'architecture de réseau
                    Identification des risques
                    Advanced Analytics transforme la façon dont les équipes chargées des opérations de sécurité utilisent les données pour mettre en œuvre de meilleures politiques. Avec Advanced Analytics, vous pouvez identifier les tendances, cibler les domaines préoccupants et utiliser les données pour prendre des mesures.
                        Les 6 cas d'utilisation les plus convaincants pour le remplacement complet des anciens VPN
                        Les 6 cas d'utilisation les plus convaincants pour le remplacement complet des anciens VPN
                        Netskope One Private Access est la seule solution qui vous permet d'abandonner définitivement votre VPN.
                          Colgate-Palmolive protège sa "propriété intellectuelle" "grâce à une protection des données intelligente et adaptable
                          Colgate-Palmolive protège sa "propriété intellectuelle" "grâce à une protection des données intelligente et adaptable
                            Netskope GovCloud
                            Netskope obtient l'autorisation FedRAMP High Authorization
                            Choisissez Netskope GovCloud pour accélérer la transformation de votre agence.
                              Faisons de grandes choses ensemble
                              La stratégie de commercialisation de Netskope privilégie ses partenaires, ce qui leur permet de maximiser leur croissance et leur rentabilité, tout en transformant la sécurité des entreprises.
                                Solutions Netskope
                                Netskope Cloud Exchange
                                Netskope Cloud Exchange (CE) fournit aux clients de puissants outils d'intégration pour tirer parti des investissements dans leur dispositif de sécurité.
                                  Support technique de Netskope
                                  Support technique de Netskope
                                  Nos ingénieurs d'assistance qualifiés sont répartis dans le monde entier et possèdent des expériences diverses dans les domaines de la sécurité du cloud, des réseaux, de la virtualisation, de la diffusion de contenu et du développement de logiciels, afin de garantir une assistance technique rapide et de qualité
                                    Vidéo Netskope
                                    Formation Netskope
                                    Grâce à Netskope, devenez un expert de la sécurité du cloud. Nous sommes là pour vous aider à achever votre transformation digitale en toute sécurité, pour que vous puissiez profiter pleinement de vos applications cloud, Web et privées.

                                      Understanding the Risks of Prompt Injection Attacks on ChatGPT and Other Language Models

                                      Jun 05 2023

                                      Summary

                                      Large language models (LLMs), such as ChatGPT, have gained significant popularity for their ability to generate human-like conversations and assist users with various tasks. However, with their increasing use, concerns about potential vulnerabilities and security risks have emerged. One such concern is prompt injection attacks, where malicious actors attempt to manipulate the behavior of language models by strategically crafting input prompts. In this article, we will discuss the concept of prompt injection attacks, explore the implications, and outline some potential mitigation strategies.

                                      What are prompt injection attacks?

                                      In the context of language models like ChatGPT, a prompt is the initial text or instruction given to the model to generate a response. The prompt sets the context and provides guidance for the model to generate a coherent and relevant response.

                                      Prompt injection attacks involve crafting input prompts in a way that manipulates the model’s behavior to generate biased, malicious, or undesirable outputs. These attacks exploit the inherent flexibility of language models, allowing adversaries to influence the model’s responses by subtly modifying the input instructions or context.

                                      Implications and risks of these cyberattacks

                                      Prompt injection could disclose a language model’s previous instructions, and in some cases, stop the model from following its original instructions. This allows a malicious user to remove safeguards around what the model is allowed to do and could even expose sensitive information. Some examples of prompt injections for ChatGPT were published here.

                                      The risks of these types of attacks include the following:

                                      1. Propagation of misinformation or disinformation: By injecting false or misleading prompts, attackers can manipulate language models to generate plausible-sounding but inaccurate information. This can lead to the spread of misinformation or disinformation, which may have severe societal implications.
                                      2. Biased output generation: Language models are trained on vast amounts of text data, which may contain biases. Prompt injection attacks can exploit these biases by crafting prompts that lead to biased outputs, reinforcing or amplifying existing prejudices.
                                      3. Privacy concerns: Through prompt injection attacks, adversaries can attempt to extract sensitive user information or exploit privacy vulnerabilities present in the language model, potentially leading to privacy breaches and misuse of personal data.
                                      4. Exploitation of downstream systems: Many applications and systems rely on the output of language models as an input. If the language model’s responses are manipulated through prompt injection attacks, the downstream systems can be compromised, leading to further security risks.

                                      Model inversion

                                      One example of a prompt injection attack is “model inversion,” where an attacker attempts to exploit the behavior of machine learning models to expose confidential or sensitive data.

                                      Model inversion is a type of attack that leverages the information revealed by the model’s outputs to reconstruct private training data or gain insights into sensitive information. By carefully designing queries and analyzing the model’s responses, attackers can reconstruct features, images, or even text that closely resemble the original training data.

                                      Organizations using machine learning models to process sensitive information face the risk of proprietary data leakage. Attackers can reverse-engineer trade secrets, intellectual property, or confidential information by exploiting the model’s behavior. Information such as medical records or customer names and addresses could also be recovered, even if it has been anonymized by the model.

                                      Mitigation strategies for developers

                                      As of the writing of this article, there is no way for developers and engineers completely prevent prompt injection attacks. However, there are some mitigation strategies that should be considered for any organization that would like to develop language model applications:

                                      • Input validation and filtering: Implementing strict input validation mechanisms can help identify and filter out potentially malicious or harmful prompts. This can involve analyzing the input for specific patterns or keywords associated with known attack vectors. The use of machine learning to do input validation is an emerging approach.
                                      • Adversarial testing: Regularly subjecting language models to adversarial testing can help identify vulnerabilities and improve their robustness against prompt injection attacks. This involves crafting and analyzing inputs specifically designed to trigger unwanted behaviors or exploit weaknesses.
                                      • Model training and data preprocessing: Developers should aim to train language models on diverse and unbiased datasets, minimizing the presence of inherent biases. Careful data preprocessing and augmentation techniques can help reduce the risk of biases in the models’ outputs.

                                      Mitigation strategies for users

                                      It’s not just important for the developers of language models to consider the security risks, but also the consumers. Some mitigation strategies for users include:

                                      • Blocking unwanted traffic: An organization could block domains related to LLM applications that are not deemed safe, or even block traffic where sensitive information is being included.
                                      • User awareness and education: Users should be educated about the risks associated with prompt injection attacks and encouraged to exercise caution while interacting with language models. Awareness campaigns can help users identify potential threats and avoid inadvertently participating in malicious activities.

                                      Conclusion

                                      Organizations are racing to implement language models into their products. While these models offer great gains in user experience, all of us need to consider the security risks associated with them.  

                                      Mitigative controls must be implemented and tested in order to ensure the responsible and secure deployment of this technology. In particular, mitigative controls around input validation and adversarial testing will greatly reduce the risk of sensitive data exposure through prompt injection attacks.

                                      Users of AI models should avoid submitting any private, sensitive, or proprietary data due the risk that it could be exposed to third-parties.

                                      If you’d like to learn more about how Netskope helps securely enable generative AI, visit our page here.

                                      author image
                                      Colin Estep
                                      Colin Estep has 16 years of experience in software, with 11 years focused on information security. He's a researcher at Netskope, where he focuses on security for AWS and GCP.
                                      Colin Estep has 16 years of experience in software, with 11 years focused on information security. He's a researcher at Netskope, where he focuses on security for AWS and GCP.

                                      Restez informé !

                                      Abonnez-vous pour recevoir les dernières nouvelles du blog de Netskope