The Future of Zero Trust and SASE is Now! Register now

close
close
The platform of the future is Netskope

Intelligent Security Service Edge (SSE), Cloud Access Security Broker (CASB), Cloud Firewall, Next Generation Secure Web Gateway (SWG), and Private Access for ZTNA built natively into a single solution to help every business on its journey to Secure Access Service Edge (SASE) architecture.

Go to Products Overview
Netskope video
Next Gen SASE Branch is hybrid — connected, secured, and automated

Netskope Next Gen SASE Branch converges Context-Aware SASE Fabric, Zero-Trust Hybrid Security, and SkopeAI-powered Cloud Orchestrator into a unified cloud offering, ushering in a fully modernized branch experience for the borderless enterprise.

Learn about Next Gen SASE Branch
People at the open space office
Designing a SASE Architecture For Dummies

Get your complimentary copy of the only guide to SASE design you’ll ever need.

Get the eBook
Embrace a Secure Access Service Edge (SASE) architecture

Netskope NewEdge is the world’s largest, highest-performing security private cloud and provides customers with unparalleled service coverage, performance and resilience.

Learn about NewEdge
NewEdge
Your Network of Tomorrow

Plan your path toward a faster, more secure, and more resilient network designed for the applications and users that you support.

Get the white paper
Your Network of Tomorrow
Netskope Cloud Exchange

The Netskope Cloud Exchange (CE) provides customers with powerful integration tools to leverage investments across their security posture.

Learn about Cloud Exchange
Netskope video
Make the move to market-leading cloud security services with minimal latency and high reliability.

Learn about NewEdge
Lighted highway through mountainside switchbacks
Safely enable the use of generative AI applications with application access control, real-time user coaching, and best-in-class data protection.

Learn how we secure generative AI use
Safely Enable ChatGPT and Generative AI
Zero trust solutions for SSE and SASE deployments

Learn about Zero Trust
Boat driving through open sea
Netskope achieves FedRAMP High Authorization

Choose Netskope GovCloud to accelerate your agency’s transformation.

Learn about Netskope GovCloud
Netskope GovCloud
  • Resources chevron

    Learn more about how Netskope can help you secure your journey to the cloud.

  • Blog chevron

    Learn how Netskope enables security and networking transformation through security service edge (SSE).

  • Events & Workshops chevron

    Stay ahead of the latest security trends and connect with your peers.

  • Security Defined chevron

    Everything you need to know in our cybersecurity encyclopedia.

Security Visionaries Podcast

Cookies, Not Biscuits
Host Emily Wearmouthas sits down with experts David Fairman and Zohar Hod to discuss the past, present, and future of internet cookies.

Play the podcast
Podcast: Cookies, Not Biscuits
Latest Blogs

How Netskope can enable the Zero Trust and SASE journey through security service edge (SSE) capabilities.

Read the blog
Sunrise and cloudy sky
SASE Week 2023: Your SASE journey starts now!

Replay sessions from the fourth annual SASE Week.

Explore sessions
SASE Week 2023
What is Security Service Edge?

Explore the security side of SASE, the future of network and protection in the cloud.

Learn about Security Service Edge
Four-way roundabout
We help our customers to be Ready for Anything

See our Customers
Woman smiling with glasses looking out window
Netskope’s talented and experienced Professional Services team provides a prescriptive approach to your successful implementation.

Learn about Professional Services
Netskope Professional Services
The Netskope Community can help you and your team get more value out of products and practices.

Go to the Netskope Community
The Netskope Community
Secure your digital transformation journey and make the most of your cloud, web, and private applications with Netskope training.

Learn about Training and Certifications
Group of young professionals working
  • Company chevron

    We help you stay ahead of cloud, data, and network security challenges.

  • Why Netskope chevron

    Cloud transformation and work from anywhere have changed how security needs to work.

  • Leadership chevron

    Our leadership team is fiercely committed to doing everything it takes to make our customers successful.

  • Partners chevron

    We partner with security leaders to help you secure your journey to the cloud.

Supporting sustainability through data security

Netskope is proud to participate in Vision 2045: an initiative aimed to raise awareness on private industry’s role in sustainability.

Find out more
Supporting Sustainability Through Data Security
Highest in Execution. Furthest in Vision.

Netskope recognized as a Leader in the 2023 Gartner® Magic Quadrant™ for Security Service Edge.

Get the report
Netskope recognized as a Leader in the 2023 Gartner® Magic Quadrant™ for Security Service Edge.
Thinkers, builders, dreamers, innovators. Together, we deliver cutting-edge cloud security solutions to help our customers protect their data and people.

Meet our team
Group of hikers scaling a snowy mountain
Netskope’s partner-centric go-to-market strategy enables our partners to maximize their growth and profitability while transforming enterprise security.

Learn about Netskope Partners
Group of diverse young professionals smiling

Understanding the Risks of Prompt Injection Attacks on ChatGPT and Other Language Models

Jun 05 2023

Summary

Large language models (LLMs), such as ChatGPT, have gained significant popularity for their ability to generate human-like conversations and assist users with various tasks. However, with their increasing use, concerns about potential vulnerabilities and security risks have emerged. One such concern is prompt injection attacks, where malicious actors attempt to manipulate the behavior of language models by strategically crafting input prompts. In this article, we will discuss the concept of prompt injection attacks, explore the implications, and outline some potential mitigation strategies.

What are prompt injection attacks?

In the context of language models like ChatGPT, a prompt is the initial text or instruction given to the model to generate a response. The prompt sets the context and provides guidance for the model to generate a coherent and relevant response.

Prompt injection attacks involve crafting input prompts in a way that manipulates the model’s behavior to generate biased, malicious, or undesirable outputs. These attacks exploit the inherent flexibility of language models, allowing adversaries to influence the model’s responses by subtly modifying the input instructions or context.

Implications and risks

Prompt injection could disclose a language model’s previous instructions, and in some cases, stop the model from following its original instructions. This allows a malicious user to remove safeguards around what the model is allowed to do and could even expose sensitive information. Some examples of prompt injections for ChatGPT were published here.

The risks of these types of attacks include the following:

  1. Propagation of misinformation or disinformation: By injecting false or misleading prompts, attackers can manipulate language models to generate plausible-sounding but inaccurate information. This can lead to the spread of misinformation or disinformation, which may have severe societal implications.
  2. Biased output generation: Language models are trained on vast amounts of text data, which may contain biases. Prompt injection attacks can exploit these biases by crafting prompts that lead to biased outputs, reinforcing or amplifying existing prejudices.
  3. Privacy concerns: Through prompt injection attacks, adversaries can attempt to extract sensitive user information or exploit privacy vulnerabilities present in the language model, potentially leading to privacy breaches and misuse of personal data.
  4. Exploitation of downstream systems: Many applications and systems rely on the output of language models as an input. If the language model’s responses are manipulated through prompt injection attacks, the downstream systems can be compromised, leading to further security risks.

Model inversion

One example of a prompt injection attack is “model inversion,” where an attacker attempts to exploit the behavior of machine learning models to expose confidential or sensitive data.

The core idea behind a model inversion attack is to leverage the information revealed by the model’s outputs to reconstruct private training data or gain insights into sensitive information. By carefully designing queries and analyzing the model’s responses, attackers can reconstruct features, images, or even text that closely resemble the original training data.

Organizations using machine learning models to process sensitive information face the risk of proprietary data leakage. Attackers can reverse-engineer trade secrets, intellectual property, or confidential information by exploiting the model’s behavior. Information such as medical records or customer names and addresses could also be recovered, even if it has been anonymized by the model.

Mitigation strategies for developers

As of the writing of this article, there is no way to completely prevent prompt injection attacks. However, there are some mitigation strategies that should be considered for any organization that would like to develop language model applications:

  • Input validation and filtering: Implementing strict input validation mechanisms can help identify and filter out potentially malicious or harmful prompts. This can involve analyzing the input for specific patterns or keywords associated with known attack vectors. The use of machine learning to do input validation is an emerging approach.
  • Adversarial testing: Regularly subjecting language models to adversarial testing can help identify vulnerabilities and improve their robustness against prompt injection attacks. This involves crafting and analyzing inputs specifically designed to trigger unwanted behaviors or exploit weaknesses.
  • Model training and data preprocessing: Developers should aim to train language models on diverse and unbiased datasets, minimizing the presence of inherent biases. Careful data preprocessing and augmentation techniques can help reduce the risk of biases in the models’ outputs.

Mitigation strategies for users

It’s not just important for the developers of language models to consider the security risks, but also the consumers. Some mitigation strategies for users include:

  • Blocking unwanted traffic: An organization could block domains related to LLM applications that are not deemed safe, or even block traffic where sensitive information is being included.
  • User awareness and education: Users should be educated about the risks associated with prompt injection attacks and encouraged to exercise caution while interacting with language models. Awareness campaigns can help users identify potential threats and avoid inadvertently participating in malicious activities.

Conclusion

Organizations are racing to implement language models into their products. While these models offer great gains in user experience, all of us need to consider the security risks associated with them.  

Mitigative controls must be implemented and tested in order to ensure the responsible and secure deployment of this technology. In particular, mitigative controls around input validation and adversarial testing will greatly reduce the risk of sensitive data exposure through prompt injection attacks.

Users of AI models should avoid submitting any private, sensitive, or proprietary data due the risk that it could be exposed to third-parties.

author image
Colin Estep
Colin Estep has 16 years of experience in software, with 11 years focused on information security. He's currently a researcher at Netskope, where he focuses on security for AWS and GCP.

Stay informed!

Subscribe for the latest from the Netskope Blog