A Netskope foi nomeada Líder no Quadrante Mágico do Gartner™ de 2022 para Security Service Edge. Obtenha o Relatório

  • Produtos

    Os produtos Netskope são construídos na Netskope Security Cloud.

  • Plataforma

    Visibilidade incomparável e proteção de dados e contra ameaças em tempo real na maior nuvem privada de segurança do mundo.

Netskope é nomeada Líder no Relatório do Quadrante Mágico™ do Gartner de 2022 para SSE

Obtenha o Relatório Vá para a plataforma
Netskope gartner mq 2022 sse leader

A Netskope oferece uma pilha de segurança na nuvem moderna, com capacidade unificada para proteção de dados e ameaças, além de acesso privado seguro.

Explore a nossa plataforma
Birds eye view metropolitan city

Mude para serviços de segurança na nuvem líderes de mercado com latência mínima e alta confiabilidade.

Saiba mais
Lighted highway through mountainside switchbacks

Previna ameaças que muitas vezes contornam outras soluções de segurança usando uma estrutura SSE de passagem única.

Saiba mais
Lighting storm over metropolitan area

Soluções de zero trust para a implementação de SSE e SASE

Saiba mais
Boat driving through open sea

A Netskope permite uma jornada segura, inteligente e rápida para a adoção de serviços em nuvem, aplicações e infraestrutura de nuvem pública.

Saiba mais
Wind turbines along cliffside
  • Customer Success

    Proteja a sua jornada de transformação digital e aproveite ao máximo as suas aplicações na nuvem, na web e privadas.

  • Atendimento ao cliente

    Suporte proativo e o compromisso em otimizar seu ambiente da Netskope e acelerar seu sucesso.

  • Treinamento e certificação

    Os treinamentos da Netskope vão ajudar você a ser um especialista em segurança na nuvem.

Confie na Netskope para ajudar você a enfrentar ameaças emergentes, novos riscos, mudanças tecnológicas, mudanças organizacionais e de rede, e novos requisitos regulatórios.

Saiba mais
Woman smiling with glasses looking out window

Contamos com engenheiros qualificados no mundo todo, com experiências variadas em segurança na nuvem, redes, virtualização, entrega de conteúdo e desenvolvimento de software, prontos para prestar assistência técnica oportuna e de alta qualidade.

Saiba mais
Bearded man wearing headset working on computer

Proteja sua jornada de transformação digital e aproveite ao máximo seus aplicativos de nuvem, web e privados com o treinamento da Netskope.

Saiba mais
Group of young professionals working
  • Recursos

    Saiba mais sobre como a Netskope pode ajudá-lo a proteger sua jornada para a nuvem.

  • Blog

    Saiba como a Netskope viabiliza a segurança e a transformação de redes através do security service edge (SSE).

  • Eventos e workshops

    Esteja atualizado sobre as últimas tendências de segurança e conecte-se com seus pares.

  • Security Defined

    Tudo o que você precisa saber em nossa enciclopédia de segurança cibernética.

Podcast Security Visionaries

Episódio bônus: a importância do Security Service Edge (SSE)

Reproduzir o podcast
Black man sitting in conference meeting

Leia as últimas novidades sobre como a Netskope pode viabilizar a jornada Zero Trust e SASE por meio dos recursos do security service edge (SSE).

Leia o Blog
Sunrise and cloudy sky

SASE Week

Netskope is positioned to help you begin your journey and discover where Security, Networking, and Zero Trust fit in the SASE world.

Saiba mais
SASE Week

O que é o Security Service Edge?

Explore o lado de segurança de SASE, o futuro da rede e proteção na nuvem.

Saiba mais
Four-way roundabout
  • Empresa

    Ajudamos você a antecipar os desafios da nuvem, dos dados e da segurança da rede.

  • Por que Netskope

    A transformação da nuvem e o trabalho em qualquer lugar mudaram a forma como a segurança precisa funcionar.

  • Liderança

    Nossa equipe de liderança está fortemente comprometida em fazer tudo o que for preciso para tornar nossos clientes bem-sucedidos.

  • Parceiros

    Fazemos parceria com líderes de segurança para ajudá-lo a proteger sua jornada para a nuvem.

A Netskope possibilita o futuro do trabalho.

Saiba mais
Curvy road through wooded area

A Netskope está redefinindo a nuvem, os dados e a segurança da rede para ajudar as organizações a aplicar os princípios de Zero Trust para proteger os dados.

Saiba mais
Switchback road atop a cliffside

Pensadores, construtores, sonhadores, inovadores. Juntos, fornecemos soluções de segurança na nuvem de última geração para ajudar nossos clientes a proteger seus dados e seu pessoal.

Meet our team
Group of hikers scaling a snowy mountain

A estratégia de comercialização da Netskope, focada em Parcerias, permite que nossos Parceiros maximizem seu crescimento e lucratividade enquanto transformam a segurança corporativa.

Saiba mais
Group of diverse young professionals smiling
Blog Threat Labs It’s All About Access: Remote Access Statistics for Public Cloud Workloads
Oct 06 2020

It’s All About Access: Remote Access Statistics for Public Cloud Workloads

Introduction

The more things change, the more they stay the same.

In the recent Equinix breach in September 2020, 74 RDP servers were exposed to the Internet. Any publicly exposed ports are a risk but remote access protocols such as RDP have had their share of critical vulnerabilities (e.g., BlueKeep in 2019).

In this blog, we will look at remote access statistics of public cloud workloads based on 287,877 compute instances across 327 anonymized production environments in AWS, Google Cloud, and Azure. The focus will be on a few common ports/protocols used for remote access or management of workloads, namely: SSH, RDP, and to a lesser extent, VNC.

What we will find is that:

  • Direct Access is Still Very Common
    Direct access to compute instances is still very common (35-85%+ of public workloads depending upon cloud provider environment)—allowing inbound traffic to ports from public CIDRs for SSH/RDP. Although this finding is not necessarily surprising, the high percentage of workloads is, from 35% up to 85%. Unsurprisingly, SSH is the most common due to the popularity of Linux workloads, followed by RDP, then VNC.
  • Broad Internet Exposure is Alarmingly Common
    Additionally, a fair number of network configurations allow broad source IP CIDRs to access these same ports (SSH/RDP) e.g. from the entire public Internet (0.0.0.0/0). Over 13% of AWS public instances allow inbound access to All Destination Ports from any public Internet address, 71% of AWS public instances allow SSH from any public Internet address, and 14% of AWS public instances allow RDP from any public Internet IP address.
  • Better Secure Access Alternatives Not Deployed
    The implication from the above is that better secure access alternatives from the cloud service providers or other vendors are not being deployed. These alternatives are more secure than direct access or bastion hosts in almost every area (credential/key management, authorization, auditing, protocol/port attack surface, protocol vulnerabilities) and are referenced later in this blog.

Direct remote access

To identify direct access, we looked at public compute instances (with at least one assigned public IP address) that have a network security group or firewall ruleset that allows inbound traffic to a port range that included any of: 22 (SSH), 3389 (RDP), or 3800/3900 (VNC) and from a public source IP range. We counted separately the All Port range (0-65535).

We might guess that remote access directly to public instances is still common in the cloud, but the frequency of occurrence is eye-opening:

  • In AWS, out of 6,597 public EC2 instances, 16% allowed inbound traffic to All Ports, 36% to SSH, 8% to RDP, 1% to VNC.
Bar graph showing AWS public compute instances of remote access
  • In GCP, out of 5,675 public compute instances, 55% allowed inbound traffic to All Ports, 88% to SSH, 85% to RDP, and 1% to VNC.
Bar graph showing GCP public compute instances of remote access
  • In Azure, out of 15,432 public compute instances, 53% allowed inbound traffic to SSH.
Bar graph showing Azure public compute instances of remote access

As we can see, direct inbound access from the Internet to public compute instances is very common, regardless of cloud service provider. This reflects bad security practices since there are better alternatives mentioned below.

In addition, allowing traffic to all All Destination Ports (0-65535) is commonly found in AWS (16%) and GCP (55%) public compute instances. Overly broad port access only increases the risk of port scans and exploits of other services running on the compute instances that normally should not be exposed to the Internet.

Internet exposure

In the inbound traffic rules and data above, narrow IP allow lists restricting traffic from a single IP address (/32) would normally mitigate some of the risks above. To provide more context, we break down the source IP ranges for these same public instances and protocols. Since VNC counts were negligible, we will focus on SSH and RDP.

We see that there are a significant number of compute instances with networking rules allowing traffic from any public Internet address

  • In AWS, out of 1,054 public compute instances allowing All Destination Ports, more than 15% (161) of these can be scanned/attacked from any public IP address. For those instances allowing SSH, more than 36% (859) are reachable from any public IP address. And for RDP, more than 30% (166) of the compute instances are reachable from any public IP address.
Bar graph showing CIDR distribution of AWS remote access
Table showing values used to create bar graph of CIDR distribution of AWS remote access
  • In GCP, similarly, more than 44% of the compute instances have rules allowing inbound traffic from any public Internet address to All Destination Ports. Instances allowing SSH are minimally exposed to the whole Internet (only .5%). But for those instances allowing RDP, more than 50% are reachable from any Internet address.
Bar graph showing CIDR distribution of GCP remote access
Table showing values used to create bar graph of CIDR distribution of AWS remote access
  • In contrast, the Azure compute instances in this dataset have tighter network controls. All Destination Ports, RDP and VNC were tightly restricted, and out of the 8,128 instances allowing SSH and the one instance allowing RDP, all (100%) of the instances were restricted to traffic from a single source IP address (/32).
Bar graph showing CIDR distribution of Azure remote access
Table showing values used to create bar graph of CIDR distribution of Azure remote access

Conclusions

In the above environments, there are clearly some security concerns:

  • Compute Instances: A significant number of public compute instances allow direct remote access to either SSH or RDP from the Internet. This ranges from more than 40% of public instances in AWS, 50% in Azure, and more than 85% in GCP that allow this traffic.
  • Ports Exposed: It is not only the number of instances, but the number of ports exposed in each instance. In AWS, 16% (1,054) of the public compute instances have All Destination Ports open to inbound traffic from the Internet, and in GCP, more than 55% (3,136) expose All Ports as well.
  • Internet Exposure: Additionally, the breadth of source IP ranges that are allowed to contact compute instances is overly broad. In AWS, 15% up to 36% of the public compute instances expose All Ports, SSH, or RDP to the entire Internet. in GCP, 44% to 51% expose All Ports or RDP similarly.
  • Protocol Vulnerabilities: There is more risk due to multiple protocols e.g. SSH and RDP and VNC. Hardening practices differ, and it’s more difficult to manage access consistently due to differences in authentication (keys/AD/password), authorization (AD/OS-level), logging (different local logs). In addition, all three protocols (SSH, RDP, VNC) have had numerous vulnerabilities and CVEs such as RDP BlueKeep etc. In addition, there are specific attacks such as SSH multiplexing that are protocol dependent.

Fortunately, there are several, relatively simple measures that can be taken to reduce these risks:

  • Audit/Configuration Checks: Compute instances and their security groups or firewall rules can be regularly audited for insecure settings, such as All Destination Ports allowed or overly broad Source IP CIDR ranges including 0.0.0.0/0. This can be done DIY with API/CLI scripts or with commercial offerings such as Netskope for AWS, Azure, and GCP

Data analysis and methodology

The analysis presented in this blog post is based on anonymized usage data collected by the Netskope Security Cloud platform relating to a subset of Netskope customers with prior authorization.

A compute instance was determined to be public if the instance had an assigned public IP address. Network routability or other intervening controls were not considered.

Protocols were inferred from common default ports for the major remote access protocols (SSH = tcp/22, RDP = tcp/udp/3389, VNC = tcp 3800/3900). Compute instances that allowed All Destination Ports (0-65535) were counted once only, while double-counting among protocols were allowed especially if ranges were used (e.g. allowed destination port range: 0-5000 would count for both SSH, RDP, and VNC).

author image
About the author
Jenko has 15+ years of experience in research, product management, and engineering in cloud security, AV/AS, routers/appliances, threat intel, Windows security, vulnerability scanning and compliance. At Netskope, he researches new cloud attacks.
Jenko has 15+ years of experience in research, product management, and engineering in cloud security, AV/AS, routers/appliances, threat intel, Windows security, vulnerability scanning and compliance. At Netskope, he researches new cloud attacks.