Junte-se a nós no SASE Summit da Netskope, chegando a uma cidade perto de você! Registre-se agora.

  • Produtos de Serviço de Segurança Edge

    Proteger-se contra ameaças avançadas e com nuvens e salvaguardar os dados em todos os vetores.

  • Borderless SD-WAN

    Confidentemente, proporcionar acesso seguro e de alto desempenho a cada usuário remoto, dispositivo, site, e nuvem.

  • Plataforma

    Visibilidade incomparável e proteção de dados e contra ameaças em tempo real na maior nuvem privada de segurança do mundo.

A plataforma do futuro é a Netskope

Intelligent Security Service Edge (SSE), Cloud Access Security Broker (CASB), Cloud Firewall, Next Generation Secure Web Gateway (SWG) e Private Access for ZTNA integrados nativamente em uma única solução para ajudar todas as empresas em sua jornada para o Secure Access Service Arquitetura de borda (SASE).

Vá para a plataforma
Vídeo da Netskope
Borderless SD-WAN: Desbravando na Nova Era da Empresa Sem Fronteiras

Netskope Borderless SD-WAN oferece uma arquitetura que converge princípios de confiança zero e desempenho de aplicativo garantido para fornecer conectividade segura e de alto desempenho sem precedentes para cada site, nuvem, usuário remoto e dispositivo IoT.

Read the article
Borderless SD-WAN
A Netskope oferece uma pilha de segurança na nuvem moderna, com capacidade unificada para proteção de dados e ameaças, além de acesso privado seguro.

Explore a nossa plataforma
Birds eye view metropolitan city
Mude para serviços de segurança na nuvem líderes de mercado com latência mínima e alta confiabilidade.

Conheça a NewEdge
Lighted highway through mountainside switchbacks
Permita com segurança o uso de aplicativos generativos de IA com controle de acesso a aplicativos, treinamento de usuários em tempo real e a melhor proteção de dados da categoria.

Saiba como protegemos o uso de IA generativa
Safely Enable ChatGPT and Generative AI
Soluções de zero trust para a implementação de SSE e SASE

Learn about Zero Trust
Boat driving through open sea
A Netskope permite uma jornada segura, inteligente e rápida para a adoção de serviços em nuvem, aplicações e infraestrutura de nuvem pública.

Learn about Industry Solutions
Wind turbines along cliffside
  • Nossos clientes

    Netskope atende a mais de 2.000 clientes em todo o mundo, incluindo mais de 25 dos 100 da Fortune.

  • Customer Solutions

    Estamos aqui junto com você a cada passo da sua trajetória, assegurando seu sucesso com a Netskope.

  • Treinamento e certificação

    Os treinamentos da Netskope vão ajudar você a ser um especialista em segurança na nuvem.

Ajudamos nossos clientes a estarem prontos para tudo

Ver nossos clientes
Woman smiling with glasses looking out window
A talentosa e experiente equipe de Serviços Profissionais da Netskope fornece uma abordagem prescritiva para sua implementação bem sucedida.

Learn about Professional Services
Netskope Professional Services
Proteja sua jornada de transformação digital e aproveite ao máximo seus aplicativos de nuvem, web e privados com o treinamento da Netskope.

Learn about Training and Certifications
Group of young professionals working
  • Recursos

    Saiba mais sobre como a Netskope pode ajudá-lo a proteger sua jornada para a nuvem.

  • Blog

    Saiba como a Netskope viabiliza a segurança e a transformação de redes através do security service edge (SSE).

  • Eventos e workshops

    Esteja atualizado sobre as últimas tendências de segurança e conecte-se com seus pares.

  • Security Defined

    Tudo o que você precisa saber em nossa enciclopédia de segurança cibernética.

Podcast Security Visionaries

Bônus Episódio 2: O Quadrante Mágico para SSE e como acertar o SASE
Mike e Steve discutem o Gartner® Magic Quadrant™ para Security Service Edge (SSE), o posicionamento da Netskope e como o clima econômico atual afetará a jornada do SASE.

Reproduzir o podcast
Bônus Episódio 2: O Quadrante Mágico para SSE e como acertar o SASE
Últimos blogs

Como a Netskope pode habilitar a jornada Zero Trust e SASE por meio dos recursos de borda de serviço de segurança (SSE).

Leia o Blog
Sunrise and cloudy sky
Netskope AWS Immersion Day World Tour 2023

A Netskope desenvolveu uma variedade de laboratórios práticos, workshops, webinars detalhados e demonstrações para educar e auxiliar os clientes da AWS no uso e implantação dos produtos Netskope.

Learn about AWS Immersion Day
Parceiro da AWS
O que é o Security Service Edge?

Explore o lado de segurança de SASE, o futuro da rede e proteção na nuvem.

Learn about Security Service Edge
Four-way roundabout
  • Empresa

    Ajudamos você a antecipar os desafios da nuvem, dos dados e da segurança da rede.

  • Por que Netskope

    A transformação da nuvem e o trabalho em qualquer lugar mudaram a forma como a segurança precisa funcionar.

  • Liderança

    Nossa equipe de liderança está fortemente comprometida em fazer tudo o que for preciso para tornar nossos clientes bem-sucedidos.

  • Parceiros

    Fazemos parceria com líderes de segurança para ajudá-lo a proteger sua jornada para a nuvem.

Apoiando a sustentabilidade por meio da segurança de dados

A Netskope tem o orgulho de participar da Visão 2045: uma iniciativa destinada a aumentar a conscientização sobre o papel da indústria privada na sustentabilidade.

Saiba mais
Supporting Sustainability Through Data Security
O mais alto nível de Execução. A Visão mais avançada.

A Netskope foi reconhecida como Líder no Magic Quadrant™ do Gartner® de 2023 para SSE.

Obtenha o Relatório
A Netskope foi reconhecida como Líder no Magic Quadrant™ do Gartner® de 2023 para SSE.
Pensadores, construtores, sonhadores, inovadores. Juntos, fornecemos soluções de segurança na nuvem de última geração para ajudar nossos clientes a proteger seus dados e seu pessoal.

Conheça nossa equipe
Group of hikers scaling a snowy mountain
A estratégia de comercialização da Netskope, focada em Parcerias, permite que nossos Parceiros maximizem seu crescimento e lucratividade enquanto transformam a segurança corporativa.

Learn about Netskope Partners
Group of diverse young professionals smiling

New Formbook Campaign Delivered Through Phishing Emails

Mar 11 2022

Sumário

Since the beginning of 2022, the unfolding geopolitical conflict between Russia and Ukraine has resulted in the discovery of new malware families and related cyberattacks. In January 2022, a new malware named WhisperGate was found corrupting disks and wiping files in Ukrainian organizations. In February 2022, another destructive malware was found in hundreds of computers in Ukraine, named HermeticWiper, along with IsaacWiper and HermeticWizard.

Aside from new malware families and novel attacks, previously known malware families continue to be used against organizations in Ukraine and throughout the world. Recently, Netskope Threat Labs came across an interesting phishing email addressed to high-ranking government officials in Ukraine containing Formbook (a.k.a. XLoader), which is a well-known malware operating in the MaaS (Malware-as-a-Service) model. This malware provides full control over infected machines, offering many functionalities such as stealing passwords, grabbing screenshots, downloading, and executing additional malware, among others.

The email seems to be part of a new spam campaign, since there were multiple emails with the same subject and body addressed to other recipients. Most of them contain an infected spreadsheet encrypted with the “VelvetSweatshop” password, which is a known Formbook behavior. The infected spreadsheet delivers the threat through vulnerability described under CVE-2017-11882 and CVE-2018-0798. However, the email addressed to government officials in Ukraine contains a .NET executable, responsible for loading Formbook in a multi-stage chain:

Formbook infection chain

In this blog post, we will analyze all the layers from the email attachment to the last Formbook payload.

Phishing Email 

The infection flow starts with a generic phishing email that uses a common technique, tricking the victim into downloading the payload by pretending to be a shipping invoice.

Screenshot of phishing email containing malicious attachment.
Phishing email containing a malicious attachment.

The attachment is a compressed file containing the first Formbook stage.

Screenshot of Email attachment carrying Formbook.
Email attachment carrying Formbook.

Also, as we mentioned previously, we found similar emails delivering malicious spreadsheets, so we believe that this is part of a new spam campaign delivering multiple threats.

Screenshot of similar phishing email with a malicious attachment.
Similar phishing email with a malicious attachment.

Analysis – Summary

Before executing the last file (Formbook), the malware is divided into multiple stages, which we have summarized below.

  1. Stage 01 is a loader, responsible for decoding and executing the next stage;
  2. Stage 02 is another loader, responsible for obtaining the encrypted bytes of Stage 03 from the resources of Stage 01, decrypting and executing it;
  3. Stage 03 is a known packer/loader named CyaX-Sharp, responsible for decrypting and executing the last stage;
  4. Stage 04 is the Formbook payload, which injects itself into other processes, as described later in this analysis.
Diagram showing a summary of Formbook loading process
Summary of Formbook loading process

Analysis – Stage 01


The first stage is a .NET executable likely compiled on February 21, 2022. This file is a loader, responsible for decoding and executing the next stage.

Screenshot of binary details of the first stage.
Binary details of the first stage.

Once we decompile the file, we can see that the real executable name is “VarArgMet.exe”. This stage doesn’t contain any code obfuscation but does contain an obfuscated string and an encrypted resource which we will discuss later.

Screenshot of first stage decompiled.
First stage decompiled.

Also, this file seems to be an infected version of a public .NET project named PlaylistPanda, created in 2009. Looking at the entry point, we can see the same code that is published in the PlaylistPanda public repository, where the MainForm function is called, followed by InitializeComponent.

Example of entry point of the first stage.
Entry point of the first stage.

In this malicious version, the InitializeComponent function contains the main code of the first stage. Once running, the code reads an obfuscated and base64 encoded string stored in a variable named x121312x121312, which contains the next stage. Once it’s deobfuscated and decoded, the file is passed as an argument to the function Springfield.  

Furthermore, this loader contains a lot of junk code that will never be executed, possibly to confuse analysts and slow down analysis.

Example of loader’s main code, decoding and executing the next stage.
Loader’s main code, decoding and executing the next stage.

The Springfield function then loads the second stage as a .NET assembly, which is saved in a variable named DebuggerVisualizer.

Example of second stage being loaded as a .NET assembly.
Second stage being loaded as a .NET assembly.

The DebuggerVisualizer variable is then passed as an argument to the EraInfo function, which executes the second stage by calling the CreateInstance function with the payload and three strings as arguments:

  • 5A6F6E654964656E746974795065726D697373696F6E417474726962 (ZoneIdentityPermissionAttrib)
  • 6F513037 (oQ07)
  • PlaylistPanda
Example of second stage being executed.
Second stage being executed.

Analysis – Stage 02


The second stage is a .NET DLL, likely compiled on February 16, 2022. This file is another loader responsible for executing the third stage, which is stored in the resources of the first stage.

Screenshot of binary details of the second stage.
Binary details of the second stage.

Once we decompile the file, we can see that the real name is “SpaceChemSolver.dll”. This file doesn’t have any sort of code obfuscation or protection. The entry point of this stage is the RunCore function, which is called within SharpStructures.Main.

Screenshot of second stage’s name.
Second stage’s name.

This code is responsible for loading and executing the third stage, which is encrypted and stored as a resource named ZoneIdentityPermissionAttrib in the first stage (PlaylistPanda), masqueraded as a bitmap image.

Example of third stage execution flow.
Third stage execution flow.

After loading the fake image from the first stage resources, the function ConstructionResponse is responsible for decrypting the binary using XOR operations with the string “oQ07”.

Screenshot of the function that decrypts the third stage.
Function that decrypts the third stage.

Once decrypted, the second stage loads the third stage as a .NET assembly, like we saw previously, executing a function named yjO9HynvmD.

Example of third stage being loaded.
Third stage being loaded.

Analysis – Stage 03 (CyaX-Sharp)

The third stage is yet another .NET file, but this time it’s protected with .NET Reactor. The compilation date is also near the other files, on February 21, 2022. This file is a known loader/packer named CyaX-Sharp, which is commonly used to deliver malware like AgentTesla and Warzone RAT.

Screenshot of binary details of the third stage.
Binary details of the third stage.

Before executing the payload, this packer offers many functionalities such as Virtual Machine and Sandbox detection. These features can be enabled or disabled through configuration, which is stored in a string within the binary.

Screenshot of CyaX-Sharp configuration string.
CyaX-Sharp configuration string.

Once it’s running, it starts by parsing the configuration string and then calling the functions related to the features for which the option is enabled.

Screenshot of CyaX-Sharp main function.
CyaX-Sharp main function.

The malware checks if there’s another instance running through a Mutex object named “WuhpBQuQigdPUFFvzgV”.

Screenshot of Mutex created by the third stage.
Mutex created by the third stage.

Then, the malware checks if the process is running with administrative privileges, and it adds the path of the executable to the exclusion list of Microsoft Defender.

Screenshot of simple Windows Defender bypass.
Simple Windows Defender bypass.

In this specific file, the Virtual Machine and Sandbox verification are disabled. However, just to demonstrate how it works, this malware is able to detect virtualized environments by checking the presence of specific values in the Windows Registry, used by software like VirtualBox and VMware.

Screenshot of functionality to detect virtualized environments.
Functionality to detect virtualized environments.

For sandbox detection, the malware searches for common file names, loaded modules, and windows titles.

Screenshot of functionality to detect sandboxes.
Functionality to detect sandboxes.

CyaX-Sharp also offers a feature to download and execute additional payloads, which is also disabled in this sample.

Screenshot of functionality to download and execute additional payloads.
Functionality to download and execute additional payloads.

It then copies itself to AppData, as “YtGUemuxgzC.exe”.

Screenshot of malware copying itself to AppData.
Malware copying itself to AppData.

The permission of this file is then changed to avoid anyone from deleting it.

Example of changing recently copied AppData permission.
Changing recently copied AppData permission.

To execute this copy, a very simple persistence technique is implemented via Windows scheduled tasks.

Example of malware’s persistence.
Malware’s persistence.

The final stage is then loaded from a resource named “fVkXSK7E”, which contains the encrypted bytes of Formbook.

Example of CyaX-Sharp loading the final stage.
CyaX-Sharp loading the final stage.

Before decrypting the payload, CyaX-Sharp builds the path string of the executable that will be used to inject Formbook. In this case, the malware is configured to use “vbc.exe”.

Formbook is then decrypted through bitwise operations using the bytes of the string “SUASbkTWociWWQ”.

Screenshot of CyaX-Sharp decrypting Formbook.
CyaX-Sharp decrypting Formbook.

Formbook is injected into “vbc.exe” via Process Hollowing, which we have already explained in more detail in this analysis. All the APIs are loaded dynamically via GetProcAddress and LoadLibraryA APIs.

Screenshot of APIs related to Process Hollowing.
APIs related to Process Hollowing.

We can find Formbook fully decrypted by inspecting the “vbc.exe” process memory, or by dumping the bytes once it’s decrypted in the third stage.

Screenshot of Formbook injected into “vbc.exe”
Formbook injected into “vbc.exe”

Analysis – Stage 04 (Formbook)

The last stage is Formbook, which is an infostealer sold as a service (MaaS) on hacking-related forums since 2016. This malware provides many functionalities, such as:

  1. Grabbing keystrokes (Keylogger);
  2. Grabbing screenshots;
  3. Grabbing HTTP(s) forms from network requests;
  4. Stealing data from the clipboard;
  5. Stealing data from common software, such as browsers, email, and ftp clients;
  6. Shutdown/Reboot the OS;
  7. Download and execute additional files;
  8. Remotely execute commands;
  9. Encrypted C2 communication;

The malware is written in ASM/C, and the compilation timestamp seems to be altered, as it indicates it was created in 2003.

Screenshot of binary details of Formbook payload.
Binary details of Formbook payload.

The primary entry point of Formbook is straightforward. Once running, it calls the main function which is named “InjectMaliciousPayload” in this IDA database. Most of the strings are obfuscated using the “Stack Strings” technique, which can be defeated with FLOSS. A list of decoded strings for this sample can be found in our GitHub repository.

Screenshot of Formbook’s primary entry point.
Formbook’s primary entry point.

It then executes a sequence of functions to assess the environment and determine whether it’s going to run, by verifying the presence of blacklisted processes and usernames, for example.

Screenshot of Formbook anti-analysis mechanisms.
Formbook anti-analysis mechanisms.

After the anti-analysis mechanisms, Formbook proceeds by creating and injecting itself into a randomly chosen process from Windows directory. In this case, it is injected into “svchost.exe”.

Screenshot of Formbook injecting itself into another process.
Formbook injecting itself into another process.

Also, another instance is injected into “explorer.exe”, responsible for the C2 communication. We found 65 different domains in this sample, where 64 are only used as decoys.

Screenshot of Formbook trying to connect to domains.
Formbook trying to connect to domains.

The real C2 of this sample is “www.biohackingz[.]one”.

Screenshot of Formbook C2 communication.
Formbook C2 communication.

This domain was first seen on February 21, 2022 on VirusTotal.

Screenshot of analysis of the C2 domain.
Analysis of the C2 domain.

Once the communication is established, Formbook parses the data to determine the action that needs to be taken.

Screenshot of part of the function that parses the C2 response.
Part of the function that parses the C2 response.

Conclusões

Formbook is an infostealer, available via the Malware-as-a-Service model since 2016, often used by non-experienced people as it’s sold as a service at a reasonable price. Although it’s a simple threat, it contains many layers and techniques to slow down analysis and bypass detection engines. Regardless of the cheap price, Formbook can be quite dangerous as it provides full access to infected systems. Netskope Threat Labs will keep monitoring this new campaign as well as others that may emerge.

Proteção

O Netskope Threat Labs está monitorando ativamente esta campanha e garantiu cobertura para todos os indicadores de ameaças e cargas conhecidas. 

  • Proteção Contra Ameaças Netskope
    • Win32.Trojan.FormBook
    • Win32.Spyware.Noon
    • Win32.Malware.Heuristic
    • ByteCode-MSIL.Malware.Heuristic
  • A Netskope Advanced Protection oferece cobertura proativa contra essa ameaça.
    • Gen.Malware.Detect.By.StHeur indica uma amostra que foi detectada usando análise estática
    • Gen.Malware.Detect.By.Sandbox indica uma amostra que foi detectada por nosso sandbox na nuvem

IOCs

All the IOCs related to this campaign and the Yara rules can be found in our GitHub repository.

author image
Gustavo Palazolo
Gustavo Palazolo é especialista em análise de malware, engenharia reversa e pesquisa de segurança, atuando há muitos anos em projetos relacionados à proteção contra fraudes eletrônicas. Atualmente, ele está trabalhando na Equipe de Pesquisa da Netskope, descobrindo e analisando novas ameaças de malware.