Netskopeは、2025年ガートナー、SASEプラットフォームのマジック・クアドラントで再びリーダーの1社として評価をいただきました。レポートを入手する

閉める
閉める
明日に向けたネットワーク
明日に向けたネットワーク
サポートするアプリケーションとユーザー向けに設計された、より高速で、より安全で、回復力のあるネットワークへの道を計画します。
Netskopeを体験しませんか?
Netskopeプラットフォームを実際に体験する
Netskope Oneのシングルクラウドプラットフォームを直接体験するチャンスです。自分のペースで進められるハンズオンラボにサインアップしたり、毎月のライブ製品デモに参加したり、Netskope Private Accessの無料試乗に参加したり、インストラクター主導のライブワークショップに参加したりできます。
SSEのリーダー。 現在、シングルベンダーSASEのリーダーです。
Netskope は、 SSE プラットフォームと SASE プラットフォームの両方で、ビジョンで最も優れたリーダーとして認められています
2X ガートナーマジック クアドラント SASE プラットフォームのリーダー
旅のために構築された 1 つの統合プラットフォーム
ダミーのためのジェネレーティブAIの保護
ダミーのためのジェネレーティブAIの保護
ジェネレーティブ AI の革新的な可能性と堅牢なデータ セキュリティ プラクティスのバランスを取る方法をご覧ください。
ダミーのための最新のデータ損失防止(DLP)eBook
最新の情報漏えい対策(DLP)for Dummies
クラウド配信型 DLP に移行するためのヒントとコツをご紹介します。
SASEダミーのための最新のSD-WAN ブック
SASEダミーのための最新のSD-WAN
遊ぶのをやめる ネットワークアーキテクチャに追いつく
リスクがどこにあるかを理解する
Advanced Analytics は、セキュリティ運用チームがデータ主導のインサイトを適用してより優れたポリシーを実装する方法を変革します。 Advanced Analyticsを使用すると、傾向を特定し、懸念事項に的を絞って、データを使用してアクションを実行できます。
Netskopeテクニカルサポート
Netskopeテクニカルサポート
クラウドセキュリティ、ネットワーキング、仮想化、コンテンツ配信、ソフトウェア開発など、多様なバックグラウンドを持つ全世界にいる有資格のサポートエンジニアが、タイムリーで質の高い技術支援を行っています。
Netskopeの動画
Netskopeトレーニング
Netskopeのトレーニングは、クラウドセキュリティのエキスパートになるためのステップアップに活用できます。Netskopeは、お客様のデジタルトランスフォーメーションの取り組みにおける安全確保、そしてクラウド、Web、プライベートアプリケーションを最大限に活用するためのお手伝いをいたします。

Don’t Mix Water and Oil – Protecting Data in the Cloud

Feb 07 2020

There’s a saying that “data is the new oil,” and just the thought of this expression highlights the value that the right data can bring to an organization. On the other hand, there’s also saying “data flows like water.” It will find its way out of its designated environment and on to systems that it wasn’t intended to be on. Even worse, it could end up in the hands of various bad actors such as hackers, insiders, or other criminals. Hence, oil and water don’t mix. Regardless of the data’s location, it’s clear the value of data itself has skyrocketed causing us to re-evaluate how we go about protecting data (both in and out of the cloud).

When we talk about securing data, it is important to understand the meaning behind both of these expressions. Additionally, when outlining a data protection strategy within a security program, you want to account for both the control’s perspective as well as the ability to support the business in their ability to execute.

A Real World Example

A few weeks ago, I was working on a project where we had conflicting principles among engineering teams that were struggling to secure data properly, while simultaneously allowing the data science team to work with the data inside their development environment. From a security perspective the answer was clear cut, however implementing it without impacting the data science team muddled the implementation. 

In our modern cloud-heavy world, where environments can be brought to life in a few minutes, security teams need to shift from just focusing on implementing controls to also providing guardrails for others within their organization to innovate. This can be accomplished by aligning the requirements from privacy, security, and business teams. 

Getting to a place of agreement among the teams often requires an analysis of the controls that are needed to address the business use cases and an understanding of how to manage your security program in order for your organization to extract the value that it hopes to find among the data. Let’s take a look at a few of these controls and see how they are implemented effectively within existing traditional infrastructure and cloud infrastructure. 

Flexible Controls for Business Agility

One of the most important objectives of any security program is to keep developers, builders and engineers out of production environments while development is underway. What critical steps do you need to take in order to accomplish this? You must find the balance between security and usability.

The intent of any control, in this case, is to prohibit development changes that can impact production, while providing just enough access to the data to enable a develop to complete their tasks. So how do we accomplish that? The answer lies in maintaining production controls in a lower environment that leverages “dummy” data for the purpose of testing and verification. 

On paper, many times we talk about production being a single environment, but in practice we often have a plethora of environments from development to production and everything in between. However, not all (production) environments are created equal. One might require a specific data set with more rigorous controls, while another doesn’t retain sensitive data so a different set of controls are applied. 

If we take the time to thoroughly understand and map out the controls, we’re able to create an environment that still meets data confidentiality and privacy considerations. The controls for data security and data science should allow engineers to be able to perform their modeling and work in a safe, but secure, environment. However, because this is a simulated production environment, capabilities like availability, regular back ups, and tiered storage aren’t required. This reduces the operational overhead without impacting the business or compromising on security.

Summary

In many organizations creating environments like this can be quite difficult, complex, and expensive. The requirements are too vague and in many cases, the binary understanding of production vs simulated production requires the engineering organizations to write a lot of exceptions to the control standards. In the end, this creates more busywork and red tape, which prevents the business from realizing the value of their data.

author image
James Robinson
James Robinson is a seasoned professional with over 20 years of experience in security engineering, architecture, and strategy.
James Robinson is a seasoned professional with over 20 years of experience in security engineering, architecture, and strategy.
Netskopeとつながる

Subscribe to the Netskope Blog

Sign up to receive a roundup of the latest Netskope content delivered directly in your inbox every month.