Netskope wird im Gartner® Magic Quadrant™ für SASE-Plattformen erneut als Leader ausgezeichnet.Holen Sie sich den Bericht

Schließen
Schließen
Ihr Netzwerk von morgen
Ihr Netzwerk von morgen
Planen Sie Ihren Weg zu einem schnelleren, sichereren und widerstandsfähigeren Netzwerk, das auf die von Ihnen unterstützten Anwendungen und Benutzer zugeschnitten ist.
          Erleben Sie Netskope
          Machen Sie sich mit der Netskope-Plattform vertraut
          Hier haben Sie die Chance, die Single-Cloud-Plattform Netskope One aus erster Hand zu erleben. Melden Sie sich für praktische Übungen zum Selbststudium an, nehmen Sie an monatlichen Live-Produktdemos teil, testen Sie Netskope Private Access kostenlos oder nehmen Sie an Live-Workshops teil, die von einem Kursleiter geleitet werden.
            Ein führendes Unternehmen im Bereich SSE. Jetzt ein führender Anbieter von SASE.
            Netskope wird als Leader mit der weitreichendsten Vision sowohl im Bereich SSE als auch bei SASE Plattformen anerkannt
            2X a Leader in the Gartner® Magic Quadrant for SASE Platforms
            One unified platform built for your journey
              Generative KI für Dummies sichern
              Generative KI für Dummies sichern
              Erfahren Sie, wie Ihr Unternehmen das innovative Potenzial generativer KI mit robusten Datensicherheitspraktiken in Einklang bringen kann.
                Moderne Data Loss Prevention (DLP) für Dummies – E-Book
                Moderne Data Loss Prevention (DLP) für Dummies
                Hier finden Sie Tipps und Tricks für den Übergang zu einem cloudbasierten DLP.
                  Modernes SD-WAN für SASE Dummies-Buch
                  Modernes SD-WAN für SASE-Dummies
                  Hören Sie auf, mit Ihrer Netzwerkarchitektur Schritt zu halten
                    Verstehen, wo die Risiken liegen
                    Advanced Analytics verändert die Art und Weise, wie Sicherheitsteams datengestützte Erkenntnisse anwenden, um bessere Richtlinien zu implementieren. Mit Advanced Analytics können Sie Trends erkennen, sich auf Problembereiche konzentrieren und die Daten nutzen, um Maßnahmen zu ergreifen.
                        Die 6 überzeugendsten Anwendungsfälle für den vollständigen Ersatz älterer VPNs
                        Die 6 überzeugendsten Anwendungsfälle für den vollständigen Ersatz älterer VPNs
                        Netskope One Private Access ist die einzige Lösung, mit der Sie Ihr VPN endgültig in den Ruhestand schicken können.
                          Colgate-Palmolive schützt sein "geistiges Eigentum" mit intelligentem und anpassungsfähigem Datenschutz
                          Colgate-Palmolive schützt sein "geistiges Eigentum" mit intelligentem und anpassungsfähigem Datenschutz
                            Netskope GovCloud
                            Netskope erhält die FedRAMP High Authorization
                            Wählen Sie Netskope GovCloud, um die Transformation Ihrer Agentur zu beschleunigen.
                              Lassen Sie uns gemeinsam Großes erreichen
                              Die partnerorientierte Markteinführungsstrategie von Netskope ermöglicht es unseren Partnern, ihr Wachstum und ihre Rentabilität zu maximieren und gleichzeitig die Unternehmenssicherheit an neue Anforderungen anzupassen.
                                ""
                                Netskope Cloud Exchange
                                Netskope Cloud Exchange (CE) bietet Kunden leistungsstarke Integrationstools, mit denen sie Investitionen in ihre gesamte Sicherheitslage nutzen können.
                                  Technischer Support von Netskope
                                  Technischer Support von Netskope
                                  Überall auf der Welt sorgen unsere qualifizierten Support-Ingenieure mit verschiedensten Erfahrungen in den Bereichen Cloud-Sicherheit, Netzwerke, Virtualisierung, Content Delivery und Software-Entwicklung für zeitnahen und qualitativ hochwertigen technischen Support.
                                    Netskope-Video
                                    Netskope-Schulung
                                    Netskope-Schulungen helfen Ihnen, ein Experte für Cloud-Sicherheit zu werden. Wir sind hier, um Ihnen zu helfen, Ihre digitale Transformation abzusichern und das Beste aus Ihrer Cloud, dem Web und Ihren privaten Anwendungen zu machen.

                                      Netskope BEAM: Open Source Detector for Supply Chain Compromise

                                      Aug 07 2025

                                      Netskope Threat Labs is pleased to announce the release of a new open-source tool that detects supply chain attacks. Our new tool, Behavioral Evaluation of Application Metrics (BEAM), requires no endpoint agent deployment and will analyze the network traffic you are already capturing in your organization to determine if your applications are communicating with unusual hosts that could be part of an attack. This tool is the subject of a 2025 Black Hat USA briefing.

                                      Supply chain attacks

                                      In December 2020, news broke of a massive cyberattack targeting SolarWinds, a leading provider of observability software. The attack was particularly insidious because it exploited vulnerabilities not in SolarWinds’ own products, but rather in the supply chain that powers them. Malicious code was embedded into several releases of SolarWinds’ software. As a result, thousands of organizations around the world were compromised, including government agencies and major corporations.

                                      This incident highlighted a growing threat to cybersecurity: the software supply chain attack. In this type of attack, malicious actors don’t just target individual companies or users, but rather the complex web of vendors, partners, and suppliers that underpin modern software development.

                                      Why supply chain attacks are so effective

                                      Supply chain attacks are particularly effective because they exploit trust and reliance on third-party vendors. Here are a few reasons why:

                                      • Complexity: Modern software development involves countless vendors, partners, and suppliers. This complexity creates many entry points for attackers.
                                      • Lack of visibility: It’s often difficult to monitor and manage the entire supply chain, making it challenging to detect anomalies or suspicious activity.
                                      • Assumed trust: Organizations may assume that their vendors are secure, which can lead to a false sense of security.

                                      Inspiration for the creation of BEAM

                                      The SolarWinds attack sparked numerous discussions on how to identify and mitigate this type of attack. CISA issued an advisory regarding this attack, which contained the following advice:

                                      Analyze stored network traffic for indications of compromise, including new external DNS domains to which a small number of agency hosts (e.g., SolarWinds systems) have had connections.

                                      We found this particular advice interesting. It spurred some questions:

                                      1. What in the traffic identifies the application that’s generating it, and should any of it be trusted?
                                      2. The advice mentions external connections, but what specifically about the external connections would be suspicious?
                                      3. Can we continuously monitor network traffic and successfully identify unusual behavior for specific applications?

                                      Let’s address each of these questions:

                                      1. In the security community, it appears that we generally avoid using user agent strings for anything because they are easily forgeable. However, when you monitor corporate environments all over the world, which largely consist of people who do not work in security, you’ll have a lot of traffic with unmodified user agent strings. This provides Netskope with the opportunity to build models about commonly used applications based on the user agent strings found in the traffic.
                                      2. We examined numerous anonymized network traffic datasets and identified features that would typically reveal suspicious traffic patterns. After months of research, we identified more than 180 features that effectively profile traffic.
                                      3. We created a proof of concept (POC) to analyze network traffic and identify strange behavior, which inspired this open-source project.

                                      Our proof of concept

                                      We built a POC, validated with some red team testing, that did these three things:

                                      • Ingest network data (parse PCAPs, HAR files, etc.)
                                      • Examine the user agent strings to see what the applications purported to be
                                      • Compare the application traffic to our models to see if they are behaving as expected (given the features we selected)

                                      We conducted a red team/blue team exercise with an early version of BEAM, which included models for a few common applications. Then, we had a red teamer compromise one of the applications to call out to a custom C2 URI without disclosing which application he had compromised or any information about its destination. We used a proxy to monitor all traffic and decrypt HTTPS, simulating a real-world corporate environment that may use a proxy.

                                      At that time, the traffic was analyzed by BEAM using pre-trained models that contained over 60 different features of web traffic. BEAM’s analysis found a 94% probability that the application had been compromised, allowing us to easily identify the red teamer’s compromise. The results encouraged us to continue building and create a free, open-source version of what we developed.

                                      How it works

                                      BEAM accepts files that contain decrypted HTTPS or HTTP traffic, such as PCAP (via Zeek) or HAR files.  BEAM parses the traffic captures and extracts the user agent string to determine what applications the traffic came from. If the user agent string has not been seen before, then it attempts to identify the application based on the user agent string. BEAM uses a large language model (LLM), as well as user agent parser packages, to identify the application associated with the user agent strings. Once it has matched the user agent string to an application, that information is saved in a local database. Now, when BEAM encounters the same user agent string in the future, it obtains the application from the database.

                                      The traffic is enriched with application information, and then the application’s behavior is compared against our pre-trained models. The comparison provides a probability that the application is behaving suspiciously.

                                      The comparison is made by using XGBoost. The applications modelled out of the box are the following:

                                      • Asana
                                      • Box
                                      • Canva
                                      • Kandji
                                      • Omnifocus
                                      • Slack
                                      • Spotify
                                      • Todoist

                                      These applications were chosen because they are quite popular third-party applications that have distinct trends and patterns. Although the current release only includes models for a specific group of applications, our training process allowed us to analyze a wider set. 

                                      BEAM uses the following select set of features:

                                      Feature CategoryNumber of FeaturesDescription
                                      Base Application Summary32Core metrics like transaction count, HTTP methods, status codes, domains
                                      Numeric Statistics76Statistical analysis for time_taken_ms, client_bytes, server_bytes, time_interval_sec
                                      Temporal Features7Time-based patterns, burst detection, circadian analysis
                                      Network Behavior9URL patterns, redirects, errors, response consistency
                                      Content Analysis12Content types, compression, response sizes, type mismatches
                                      Protocol Security9HTTPS usage, HTTP versions, mixed content, security indicators
                                      Header Fingerprint10User-Agent analysis, browser detection, referrer patterns
                                      Supply Chain Indicators12External domains, CDN usage, suspicious patterns, automation detection
                                      Behavioral Baseline7IP diversity, request volumes, error rates, method usage
                                      Graph-based Domain Analysis12Domain relationships, TLD analysis, subdomain complexity
                                      Total Features186

                                      Running it in your environment

                                      You can access the tool immediately from GitHub here: https://github.com/netskopeoss/beam. We included one sample HAR file as a part of BEAM so you can try it immediately without adding any of your own data. Below is an example of the output generated from our demo HAR file:

                                      Figure: Screenshot of BEAM’s demo output

                                      The HAR file that was analyzed above primarily contained traffic from Chrome and Box. The traffic from Box was compared against BEAM’s models. BEAM determined that there was more than a 99% possibility of a compromise here because the traffic in the HAR file showed communication from this Box application to an unusual endpoint (xqpt5z.dagmawi.io). It did this by flagging patterns in the traffic that did not match the typical communication patterns of a Box client instance.

                                      Figure: SHAP waterfall plot for the prediction

                                      In the beam/predictions directory, an accompanying image will be available that displays a SHAP Waterfall plot for each analyzed session. The plot illustrates the reasoning behind the prediction by breaking down the impact of each feature on the model’s output. In this particular case, the plot above shows the following top reasons that this session was indicative of a compromise:

                                      • Reaching out to a strange endpoint that has a high level of entropy (url_entropy)
                                      • Transferring much less data than usual to the server (min_server_bytes)
                                      • Taking much less time than usual to transact with the server (median_time_taken_ms)
                                      • Interacting with the wrong number of hosts for updates (key_hostname_cnt)

                                      Running BEAM on your own applications

                                      BEAM allows users to create models for their own bespoke applications that were not included in the original codebase. To create your own models, you must first capture traffic from the applications you want to model as HAR or PCAP files. BEAM requires at least 50 transactions to gather sufficient data for model building. However, more traffic is better. 

                                      How does it work?

                                      The bespoke application modeling uses unsupervised ensemble methods, which include Tensor Flow, Isolation Forests, and Single Class Support Vector Machines (SVM). BEAM attempts to build a new custom model for any application that has sufficient traffic in the sample and then stores it for use by the detection component. If an application does not have enough transactions in the traffic capture, then BEAM will not build a model for it.

                                      Example usage

                                      Conclusion

                                      If you are interested in this project, please go ahead and sync the repo from GitHub and try it out!

                                      We look forward to collaborating with the open-source community, so please feel free to log issues and contact us with your suggestions.

                                      author image
                                      Colin Estep
                                      Colin Estep has 16 years of experience in software, with 11 years focused on information security. He's a researcher at Netskope, where he focuses on security for AWS and GCP.
                                      Colin Estep has 16 years of experience in software, with 11 years focused on information security. He's a researcher at Netskope, where he focuses on security for AWS and GCP.
                                      author image
                                      Dagmawi Mulugeta
                                      Dagmawi Mulugeta is a security researcher with interests in cloud security, incident analysis & prediction, exploit development, and large-scale data analysis.
                                      Dagmawi Mulugeta is a security researcher with interests in cloud security, incident analysis & prediction, exploit development, and large-scale data analysis.
                                      Verbinden Sie sich mit Netskope

                                      Subscribe to the Netskope Blog

                                      Sign up to receive a roundup of the latest Netskope content delivered directly in your inbox every month.