ネットスコープは、2022年Gartner®社のセキュリティ・サービス・エッジ(SSE)のマジック・クアドラントでリーダーの1社と位置付けられました。レポートを読む

  • プラットフォーム

    世界最大のセキュリティプライベートクラウドでの比類のない可視性とリアルタイムデータおよび脅威保護。

  • 製品

    Netskope製品は、NetskopeSecurityCloud上に構築されています。

Netskope は、データと脅威の保護、および安全なプライベートアクセスを実現するための機能を統合した、最新のクラウドセキュリティスタックを提供します。

プラットフォームを探索する
Birds eye view metropolitan city

ネットスコープ、2022年Gartner社のセキュリティ・サービス・エッジ(SSE)のマジック・クアドラントでリーダーの1社と位置付けられる

レポートを読む 製品概要に移動
Netskope gartner mq 2022 sse leader
  • 変身

    デジタルトランスフォーメーションを保護します。

  • セキュリティの近代化

    今日と明日のセキュリティの課題に対応します。

  • フレームワーク

    サイバーセキュリティを形作る規制の枠組みを採用する。

  • 業界ソリューション

    Netskopeは、クラウドに安全に移行するためのプロセスを世界最大規模の企業に提供しています。

最小の遅延と高い信頼性を備えた、市場をリードするクラウドセキュリティサービスに移行します。

詳しくはこちら
Lighted highway through mountainside switchbacks

シングルパスSSEフレームワークを使用して、他のセキュリティソリューションを回避することが多い脅威を防止します。

詳しくはこちら
Lighting storm over metropolitan area

SSEおよびSASE展開のためのゼロトラストソリューション

詳しくはこちら
Boat driving through open sea

Netskopeは、クラウドサービス、アプリ、パブリッククラウドインフラストラクチャを採用するための安全でクラウドスマートかつ迅速な旅を可能にします。

詳しくはこちら
Wind turbines along cliffside
  • お客様の成功事例

    デジタルトランスフォーメーションの旅を保護し、クラウド、Web、およびプライベートアプリケーションを最大限に活用します。

  • カスタマーサポート

    Netskope環境を最適化し、成功を加速するためのプロアクティブなサポートとエンゲージメント。

  • トレーニングと認定

    Netskope training will help you become a cloud security expert.

Netskopeを信頼して、進化する脅威、新しいリスク、テクノロジーの変化、組織とネットワークの変更、および新しい規制要件への対応を支援してください。

詳しくはこちら
Woman smiling with glasses looking out window

クラウドセキュリティ、ネットワーキング、仮想化、コンテンツ配信、ソフトウェア開発のさまざまなバックグラウンドを持つ世界中の資格のあるエンジニアが、タイムリーで高品質の技術支援を提供する準備ができています。

詳しくはこちら
Bearded man wearing headset working on computer

Netskopeトレーニングで、デジタルトランスフォーメーションの旅を保護し、クラウド、ウェブ、プライベートアプリケーションを最大限に活用してください。

詳しくはこちら
Group of young professionals working
  • リソース

    クラウドへ安全に移行する上でNetskopeがどのように役立つかについての詳細は、以下をご覧ください。

  • ブログ

    Netskopeがセキュリティサービスエッジ(SSE)を通じてセキュリティとネットワークの変革を可能にする方法を学びましょう。

  • イベント&ワークショップ

    最新のセキュリティトレンドを先取りし、仲間とつながりましょう。

  • 定義されたセキュリティ

    サイバーセキュリティ百科事典で知っておくべきことすべて。

セキュリティビジョナリーポッドキャスト

ボーナスエピソード:セキュリティサービスエッジ(SSE)の重要性

ポッドキャストを再生する
Black man sitting in conference meeting

Netskopeがセキュリティサービスエッジ(SSE)機能を介してゼロトラストおよびSASEジャーニーを実現する方法に関する最新情報をお読みください。

ブログを読む
Sunrise and cloudy sky

NetskopeCSOスピーキングイベント

今後のイベントの1つでNetskopeCSOチームに会いましょう。

イベントを探す
Netskope CSO Team

セキュリティサービスエッジとは何ですか?

SASEのセキュリティ面、ネットワークとクラウドでの保護の未来を探ります。

詳しくはこちら
Four-way roundabout
  • 会社概要

    クラウド、データ、ネットワークのセキュリティの課題を先取りするお手伝いをします。

  • ネットスコープが選ばれる理由

    クラウドの変革とどこからでも機能することで、セキュリティの機能方法が変わりました。

  • リーダーシップ

    ネットスコープの経営陣はお客様を成功に導くために全力を尽くしています。

  • パートナー

    私たちはセキュリティリーダーと提携して、クラウドへの旅を保護します。

Netskopeは仕事の未来を可能にします。

詳しくはこちら
Curvy road through wooded area

Netskopeは、組織がゼロトラストの原則を適用してデータを保護できるように、クラウド、データ、およびネットワークのセキュリティを再定義しています。

詳しくはこちら
Switchback road atop a cliffside

思想家、建築家、夢想家、革新者。 一緒に、私たちはお客様がデータと人々を保護するのを助けるために最先端のクラウドセキュリティソリューションを提供します。

私たちのチームに会う
Group of hikers scaling a snowy mountain

Netskopeのパートナー中心の市場開拓戦略により、パートナーは企業のセキュリティを変革しながら、成長と収益性を最大化できます。

詳しくはこちら
Group of diverse young professionals smiling
ブログ 脅威ラボ URSNIF Data Theft Malware Shared on Microsoft OneDrive
Aug 02 2016

URSNIF Data Theft Malware Shared on Microsoft OneDrive

Netskope Threat Research Labs has observed the URSNIF data theft malware being shared among Microsoft OneDrive users. The malware was observed propagating via a malicious Microsoft Word macro which tricks the end user into opening the file and, if macros are disabled, enabling them. The Word macro is heavily obfuscated, making it difficult for traditional antivirus products to detect it. Additionally, a collection of anti-sandbox techniques are employed in attempt to subvert sandboxes and other run-time detection techniques.

Netskope Active Threat Protection detects the malicious Word file as “W97M.Downloadr.DVS” and the resulting URSNIF data theft malware as “Backdoor.Generckd.3415082”.

Analysis of Malicious Word Document

While analyzing this malicious Word document, we found a fake error trick used to lure the victim as well as several anti-sandbox techniques used to bypass automated sandboxes. Once the document file is opened, a very clever but illegitimate error message is shown to fool the victim. The error message looks like a genuine Word error as shown in Figure 1.

Figure1_dridex_doc

Figure 1: Word document with fake error message.

The error message shown in above Figure 1 lures the victim into enabling macros to correct the error encountered with this fake message. The document contains malicious macro code and we can see the code using VBA editor (use ALT + F11). The obfuscated macro code is shown in Figure 2.

Figure2_dridex_vba_code

Figure 2: Obfuscated macro code inside document.

The macros are split into couple of modules and they are only run when “Document_Close()” function executes.

Anti-sandbox Techniques Employed by the Attack Macro

The malicious Word document will not run in a virtual environment. The macros within the malicious Word document use several anti-sandbox techniques to bypass certain sandbox environments as shown in Figure 3.

Figure3_dridex_anti

Figure 3: Anti-sandbox techniques to bypass sandboxes

The following are some of the anti-sandbox highlights:

  1. The macros only run their code when the document is closed. This is used to bypass weaker sandbox environments, which only monitor activities for a period of time rather than opening and later closing the document as a real user would.
  2. The macros check for user name against “PSPUBWS” that is being used to identify the hybrid-analysis.com sandbox as shown in Figure 4.
Figure4_dridex_hybriduser

Figure 4: User name “PSPUBWS” used in Hybrid analysis sandbox

  1. Lastly, the macros check for recent files count. If the count is less than 3, it will terminate without downloading its main payload. Since many sandboxes operate in a clean initial configuration with no regularly activity, this would cause the threat to exit on the sandbox.

Figure 5 shows how the clean code looks like when all of the obfuscated strings have been decoded to its human readable version.

Figure5_dridex_cleancode

Figure 5: Clean code after decoding all the strings in the macros.

Once the Word macro passes the anti-sandbox checks, confirming it is executing on a real victim endpoint, it will query victim’s IP address details using “https://wtfismyip.com/” as shown in Figure 6.

Figure6_dridex_checkip

Figure 6: Query victim’s IP address details.

The macro then compares all the data returned in the above result against a block list of strings. The block list of strings includes several security vendors, common cloud terms, and the country name “United States” as shown in Figure 7.

Figure7_dridex_string

Figure 7: Block list of strings which includes several security vendors.

If a match is found, the macro will exit without downloading its main payload which also means it will terminate if the victim’s country is the United States. If none of them match, the macro will download its main payload, the URSNIF data-stealing malware, from another server using PowerShell as shown in Figure 8. The fact that PowerShell is invoked with “-ExecutionPolicy Bypass” makes it run without a warning.

Figure8_dridex_powershell

Figure 8: Malicious Word Document Macro using PowerShell to execute its main payload.

Analysis of URSNIF Data Theft Operation

The main payload unpacks its custom packed code, copies itself into %APPDATA%/Auxiap32/aeevuser.exe with a name and icon of FileZilla FTP client as shown in Figure 9.

Figure9_ursnif_ftpicon

Figure 9: Payload drops its own copy with FileZilla FTP Client icon and description

The unpacked code injects its malicious code into the “explorer.exe” process using well known “ZwCreateSection”, “ZwMapViewOfSection()” and “ZwUnmapViewOfSection()” API methods as shown in Figure 10.

Figure10_ursnif_mapsections

Figure 10: Payload injecting its malicious code into explorer.exe using well known API methods.

URSNIF also hooks various executable files in order to monitor browsers. It hooks NSS3.DLL and NSPR4.DLL to monitor Mozilla Firefox; WS2_32.DLL, CHROME.DLL to monitor Google Chrome; and WININET.DLL to monitor Internet Explorer. The URSNIF uses custom encoded HTTP GET or POST requests over SSL to communicate with its Command and Control (C&C) server in order to accept further commands as shown in Figure 11.

Figure11_ursnif_ssl_post

Figure 11: URSNIF custom encoded HTTP POST communication to its C&C server over SSL.

The URL path of the request is encoded before sending it over the network. The URSNIF first prepares information to be sent to its C&C server about infection in the URL path as shown in Figure 12.

Figure12_ursnif_url_data

Figure 12: URL path containing user’s information before the use of the encoding algorithm.

URSNIF then encodes this URL path using custom algorithm, prepends the string “/images/” and the C&C domain name to the encoded URL path and appends “.gif” extension to the final URL as shown in Figure 13.

Figure13_ursnif_url_encode

Figure 13: URSNIF final encoded URL preparation process.

Further, URSNIF starts uploading the victim’s sensitive data to its C&C server as a file which is a randomly generated .bin file under %TEMP% folder as shown in Figure 14.

Figure14_ursnif_upload

Figure 14: URSNIF uploads user’s data using randomly generated .bin file

Data Exfiltration Content

URSNIF captures a user’s data such as recent browsing history and recent opened folder paths and stores it in randomly created .bin files in the user’s %TEMP% folder as shown in Figure 15.

Figure15_ursnif_bin

Figure 15: URSNIF stores captured information in ZIP file with .bin extensions under TEMP folder

Analysis showed that the file name “E8E4.bin” uploaded to URSNIF C&C server is in fact a ZIP file containing a set of random plain text files as shown in Figure 16. These files contain information such as recently browsed domains along with the browser process name in plain text.

Figure16_ursnif_urls

Figure 16: Data exfiltrated by URSNIF

All of the URL information captured by URSNIF as shown in Figure 16 are random fake URLs we used for testing URSNIF traffic. Other strings present in the memory suggest URSNIF can potentially steal sensitive information such as usernames and passwords of SMTP/POP3/IMAP, OUTLOOK, Windows Mail accounts etc. as shown in Figure 17.

Figure17__ursnif_smtppop

Figure 17: Potential data that can be stolen by URSNIF malware

We have observed that attackers are continuously finding new ways to lure victims into enabling hidden macros inside document files. Attackers are also coming up with new anti-sandbox tricks to bypass automated sandbox analysis. The use of hidden macros inside document files along with the use of  PowerShell makes this attack much easier to execute and very effective. Also, the use of custom encoded URLs over HTTPS/SSL communication makes it much more difficult for traditional network security devices to detect such malicious network traffic.

Indicators of Compromise (IOCs)

Malicious word document file hashes (MD5)

d92f138fdc7217ef4793c6373ed16b8a

492ea0e9d246e0af878a0ea215e15744

B40cffd21b6c2297dc8552c44f04fccd

URSNIF malware binary file hash (MD5)

51f303a577b47bc12fe019190dac1383

C&C servers and other interesting domains/IP

aagheresherecliallow.me

Usallowalclientallow.me

z1.zedo.com/robots.txt

91.213.126.113

URL patterns

/images/QOz6k6pnqHAEhlWvRV3/CLxaNf38SFReZrruRP8JIO/J_2FDssnLdOTb/RseMEoo_/2BTanNzhKhkiTo9VrsuFgzl/Vd6xdh3QM8/wrhVUaQ5cuL21WX5b/yGwMgfx7N0Mo/TD8C_2B65Qx/AjO_2FbKEwb4_2/F_2BeR_2FNQnaVdcO9fw9/0tcdR5gf/BnsJqHQ.bmp

/images/bhdnlmT9XBki/eeBkXFpZ2_2/BIUevLJSK1DH7F/oSfXQ7Rux_2B0Bf4nlrOV/fBU1n53oTQ_2F0LF/gMbnUzQAawsRTmv/EgAQkDR8juRnvtyXFm/ZF_2Beno_/2BciFFJ6KvHQUXLL1F6G/FA_2B1HNF_2BMiTdsyu/zRxlZuVM/Z.gif

(Note the use of ‘/images/’ and the extensions ‘.gif’ and ‘.bmp’)