ゼロトラストの未来とSASEの現在今すぐ登録

閉める
閉める
  • セキュリティサービスエッジ製品 シェブロン

    高度なクラウド対応の脅威から保護し、あらゆるベクトルにわたってデータを保護

  • Borderless SD-WAN シェブロン

    すべてのリモートユーザー、デバイス、サイト、クラウドへ安全で高性能なアクセスを提供

  • Secure Access Service Edge シェブロン

    Netskope SASE は、クラウドネイティブで完全に統合された単一ベンダーの SASE ソリューションを提供します。

未来のプラットフォームはNetskopeです

インテリジェントセキュリティサービスエッジ(SSE)、クラウドアクセスセキュリティブローカー(CASB)、クラウドファイアウォール、セキュアウェブゲートウェイ(SWG)、およびZTNAのプライベートアクセスは、単一のソリューションにネイティブに組み込まれており、セキュアアクセスサービスエッジ(SASE)アーキテクチャへの道のりですべてのビジネスを支援します。

製品概要はこちら
Netskopeの動画
Next Gen SASE Branch はハイブリッドである:接続、保護、自動化

Netskope Next Gen SASE Branchは、コンテキストアウェアSASEファブリック、ゼロトラストハイブリッドセキュリティ、 SkopeAI-Powered Cloud Orchestrator を統合クラウド製品に統合し、ボーダレスエンタープライズ向けに完全に最新化されたブランチエクスペリエンスを実現します。

Next Gen SASE Branchの詳細はこちら
オープンスペースオフィスの様子
SASEアーキテクチャの設計 For Dummies

SASE設計について網羅した電子書籍を無償でダウンロード

電子書籍を入手する
セキュアアクセスサービスエッジ(SASE)アーキテクチャの採用

Netskope NewEdgeは、世界最大かつ最高のパフォーマンスのセキュリティプライベートクラウドであり、比類のないサービスカバレッジ、パフォーマンス、および回復力を顧客に提供します。

NewEdgeの詳細
NewEdge
明日に向けたネットワーク

サポートするアプリケーションとユーザー向けに設計された、より高速で、より安全で、回復力のあるネットワークへの道を計画します。

ホワイトペーパーはこちら
明日に向けたネットワーク
Netskope Cloud Exchange

Netskope Cloud Exchange (CE) は、セキュリティポスチャに対する投資を活用するための強力な統合ツールを提供します。

Cloud Exchangeについて学ぶ
Netskopeの動画
最小の遅延と高い信頼性を備えた、市場をリードするクラウドセキュリティサービスに移行します。

NewEdgeの詳細
山腹のスイッチバックを通るライトアップされた高速道路
アプリケーションのアクセス制御、リアルタイムのユーザーコーチング、クラス最高のデータ保護により、生成型AIアプリケーションを安全に使用できるようにします。

生成AIの使用を保護する方法を学ぶ
ChatGPTと生成AIを安全に有効にする
SSEおよびSASE展開のためのゼロトラストソリューション

ゼロトラストについて学ぶ
大海原を走るボート
NetskopeがFedRAMPの高認証を達成

政府機関の変革を加速するには、Netskope GovCloud を選択してください。

Netskope GovCloud について学ぶ
Netskope GovCloud
  • リソース シェブロン

    クラウドへ安全に移行する上でNetskopeがどのように役立つかについての詳細は、以下をご覧ください。

  • ブログ シェブロン

    Netskopeがセキュリティサービスエッジ(SSE)を通じてセキュリティとネットワークの変革を可能にする方法を学びましょう。

  • イベント&ワークショップ シェブロン

    最新のセキュリティトレンドを先取りし、仲間とつながりましょう。

  • 定義されたセキュリティ シェブロン

    サイバーセキュリティ百科事典、知っておくべきすべてのこと

「セキュリティビジョナリー」ポッドキャスト

ビスケットではなくクッキー
司会のエミリー・ウェアマスが、専門家のデビッド・フェアマン氏とゾハール・ホッド氏と対談し、インターネットクッキーの過去、現在、未来について語ります。

ポッドキャストを再生する
ポッドキャスト:ビスケットではなくクッキー
最新のブログ

Netskopeがセキュリティサービスエッジ(SSE)機能を通じてゼロトラストとSASEの旅を可能にする方法。

ブログを読む
日の出と曇り空
SASE Week 2023年:SASEの旅が今始まります!

第4回 SASE Weekのリプレイセッション。

セッションの詳細
SASE Week 2023
セキュリティサービスエッジとは

SASEのセキュリティ面、ネットワークとクラウドでの保護の未来を探ります。

セキュリティサービスエッジの詳細
4方向ラウンドアバウト
私たちは、お客様が何にでも備えることができるように支援します

お客様を見る
窓の外を見て微笑むメガネをかけた女性
Netskopeの有能で経験豊富なプロフェッショナルサービスチームは、実装を成功させるための規範的なアプローチを提供します。

プロフェッショナルサービスについて学ぶ
Netskopeプロフェッショナルサービス
Netskopeコミュニティは、あなたとあなたのチームが製品とプラクティスからより多くの価値を引き出すのに役立ちます。

Netskopeコミュニティに移動
Netskope コミュニティ
Netskopeトレーニングで、デジタルトランスフォーメーションの旅を保護し、クラウド、ウェブ、プライベートアプリケーションを最大限に活用してください。

トレーニングと認定資格について学ぶ
働く若い専門家のグループ
  • 会社概要 シェブロン

    クラウド、データ、ネットワークセキュリティの課題に対して一歩先を行くサポートを提供

  • Netskopeが選ばれる理由 シェブロン

    クラウドの変革とどこからでも機能することで、セキュリティの機能方法が変わりました。

  • リーダーシップ シェブロン

    Netskopeの経営陣はお客様を成功に導くために全力を尽くしています。

  • パートナー シェブロン

    私たちはセキュリティリーダーと提携して、クラウドへの旅を保護します。

データセキュリティによる持続可能性のサポート

Netskope は、持続可能性における民間企業の役割についての認識を高めることを目的としたイニシアチブである「ビジョン2045」に参加できることを誇りに思っています。

詳しくはこちら
データセキュリティによる持続可能性のサポート
Highest in Execution. Furthest in Vision.

ネットスコープは2023年Gartner®社のセキュリティ・サービス・エッジ(SSE)のマジック・クアドラント™でリーダーの1社として評価されました。

レポートを読む
ネットスコープは2023年Gartner®社のセキュリティ・サービス・エッジ(SSE)のマジック・クアドラント™でリーダーの1社として評価されました。
思想家、建築家、夢想家、革新者。 一緒に、私たちはお客様がデータと人々を保護するのを助けるために最先端のクラウドセキュリティソリューションを提供します。

当社のチーム紹介
雪山を登るハイカーのグループ
Netskopeのパートナー中心の市場開拓戦略により、パートナーは企業のセキュリティを変革しながら、成長と収益性を最大化できます。

Netskope パートナーについて学ぶ
色々な若い専門家が集う笑顔のグループ

AI and Deep Learning At Work: How to Know If Your Images Are Storing Sensitive Information

Jun 02 2023

In today’s rapidly digitizing world, the importance of data security has become paramount. With the increasing amount of sensitive information being shared and stored online, securing information from cyber attacks, information breaches, and theft has become a top priority for companies of all sizes. Data loss prevention (DLP) is a critical part of the Netskope Intelligent Security Service Edge (SSE) security platform, providing best-in-class data security to our customers. 

Images often contain a wealth of valuable and sensitive data. Financial documents, personal identification, and confidential business communications frequently include images that require the utmost security. At Netskope, we have developed state-of-the-art deep learning-based computer vision classifiers that can analyze images and identify sensitive information in a wide variety of categories such as passports, drivers licenses, credit cards, and screenshots. We have been awarded four U.S. patents for our innovative approach to data security. In this blog post, we highlight recent improvements to our image classifiers that resulted in higher accuracy and better customer experience.  

CNN Architecture Update

At the heart of our image classification models lie convolutional neural networks (CNNs). These powerful deep learning algorithms are specifically designed for image recognition and classification tasks. By employing a technique known as transfer learning, we take advantage of pre-existing CNNs that have been trained on large-scale datasets and fine-tune them using a smaller dataset of labeled images that contain sensitive information. As a result, our classifiers are able to quickly identify the unique patterns associated with the sensitive information, with high accuracy and reduced training time. 

There are several practical concerns in selecting the pre-trained CNN models. Given that our classifiers are used to scan millions of customer files daily by our SSE platform, it is crucial to keep false positives as low as possible to avoid overwhelming customers with spurious alerts. Simultaneously, since true positives indicate a serious data leak, maintaining a high true positive rate is equally important. An additional challenge lies in creating classifiers complex enough to meet our accuracy goals yet compact enough to fulfill our stringent latency requirements, since they run in real time on the SSE platform. As such, we only considered pre-trained CNN model architectures with fewer than 10 Million parameters.

EfficientNet Architecture (https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html)

In our latest model update, we transitioned to EfficientNet pre-trained CNN architecture (modeled in the figure above). This lead to an 80% increase in the number of model parameters. Using a larger pre-trained model incurred a modest increase in latency but yielded a significant boost in real-world accuracy. 

Training on real cloud data

In order to minimize false positives, it is important for our image classifiers to be exposed to a wide variety of realistic negative samples. To achieve this, we have sourced tens of thousands of actual cloud images from our own corporate data. This approach enables us to collect a substantial number of genuine training images, while simultaneously maintaining our commitment to customer privacy. These images were labeled by hand, with the majority of them being either negative examples or screenshots typical of real-world cloud data. 

In addition to these random negative examples, we have also incorporated several thousand carefully curated adversarial samples, further bolstering our classifiers’ resilience against false positives. One interesting type of adversarial sample was labels for electronics. Due to their bold fonts and high contrast coloring, they can be mistaken for sensitive documents. By training our classifiers on these adversarial examples, we can effectively prevent such misclassifications in the production environment.

Custom data augmentations

Example of image augmentation. A training sample of a driver’s license is pasted on a realistic background, in this case a screenshot.

In addition to sourcing real cloud data, we employ a comprehensive suite of data augmentation techniques specifically designed for computer vision applications, such as rotation and cropping. What sets our approach apart is the customization of these augmentations to ensure maximum fidelity with the image data encountered in real cloud environments. One example is our custom augmentation that seamlessly integrates documents onto realistic backgrounds, such as a driver’s license pasted on a screenshot. This enables our classifiers to train on documents in a diverse range of settings, significantly boosting its versatility and performance on real-world data.

Summary

In our pursuit to develop cutting-edge AI security solutions, we continuously strive to refine our methodologies and data sources to build powerful, adaptive data security models capable of safeguarding the ever-evolving digital landscape.

To learn more about how Netskope helps customers protect their sensitive data everywhere across their entire enterprise, please visit Netskope Data Loss Prevention.  And to keep up with with what our AI Labs team is writing about, please visit our AI Labs blog page here.

author image
Jason Bryslawskyj
At Netskope, Jason has been developing computer vision models for data loss prevention and phishing detection.

Stay informed!

Subscribe for the latest from the Netskope Blog