This is the first in a series of articles focused on AI/ML.
The past few years have witnessed rapid developments in artificial intelligence (AI) and machine learning (ML). Thanks to the breakthroughs in deep learning, such as convolutional neural networks (CNN) for image recognition and transformers for natural language processing (NLP), AI/ML is now used to solve many real-world problems with great accuracy across different industries, including cybersecurity. AI/ML models have the potential to detect unknown threats and anomalous behavioral patterns, which makes them an indispensable part of any comprehensive, multi-layered cybersecurity solution.
A leader in cloud security, Netskope is integrating the latest AI/ML technology into its data and threat protection features, as well as business operations. At Netskope, we have a team of dedicated data scientists, security researchers, and engineers who have track records of solving security and fraud problems in different domains with over 100 patents. Leveraging our expertise in AI/ML and security, we are developing large-scale AI/ML solutions for cloud security. In this blog post, we will give you an overview of Netskope’s data, the types of problems we are trying to solve with AI/ML, and some of the technical challenges our team faces in addressing these problems.
Netskope’s Data Advantage
Data powers AI and machine learning solutions. Netskope’s data advantage lies in the breadth and depth of corporate user traffic that we protect. Every day the Netskope Security Cloud processes billions of events and files, capturing a wide variety of user activities in:
- Saa