閉める
閉める
明日に向けたネットワーク
明日に向けたネットワーク
サポートするアプリケーションとユーザー向けに設計された、より高速で、より安全で、回復力のあるネットワークへの道を計画します。
          Netskopeを体験しませんか?
          Netskopeプラットフォームを実際に体験する
          Netskope Oneのシングルクラウドプラットフォームを直接体験するチャンスです。自分のペースで進められるハンズオンラボにサインアップしたり、毎月のライブ製品デモに参加したり、Netskope Private Accessの無料試乗に参加したり、インストラクター主導のライブワークショップに参加したりできます。
            SSEのリーダー。 現在、シングルベンダーSASEのリーダーです。
            SSEのリーダー。 現在、シングルベンダーSASEのリーダーです。
            Netskope、2024年ガートナー、シングルベンダーSASEのマジック・クアドラントでリーダーの1社の位置付けと評価された理由をご確認ください。
              ダミーのためのジェネレーティブAIの保護
              ダミーのためのジェネレーティブAIの保護
              ジェネレーティブ AI の革新的な可能性と堅牢なデータ セキュリティ プラクティスのバランスを取る方法をご覧ください。
                ダミーのための最新のデータ損失防止(DLP)eBook
                最新の情報漏えい対策(DLP)for Dummies
                クラウド配信型 DLP に移行するためのヒントとコツをご紹介します。
                  SASEダミーのための最新のSD-WAN ブック
                  SASEダミーのための最新のSD-WAN
                  遊ぶのをやめる ネットワークアーキテクチャに追いつく
                    リスクがどこにあるかを理解する
                    Advanced Analytics は、セキュリティ運用チームがデータ主導のインサイトを適用してより優れたポリシーを実装する方法を変革します。 Advanced Analyticsを使用すると、傾向を特定し、懸念事項に的を絞って、データを使用してアクションを実行できます。
                        レガシーVPNを完全に置き換えるための6つの最も説得力のあるユースケース
                        レガシーVPNを完全に置き換えるための6つの最も説得力のあるユースケース
                        Netskope One Private Accessは、VPNを永久に廃止できる唯一のソリューションです。
                          Colgate-Palmoliveは、スマートで適応性のあるデータ保護により「知的財産」を保護します
                          Colgate-Palmoliveは、スマートで適応性のあるデータ保護により「知的財産」を保護します
                            Netskope GovCloud
                            NetskopeがFedRAMPの高認証を達成
                            政府機関の変革を加速するには、Netskope GovCloud を選択してください。
                              一緒に素晴らしいことをしましょう
                              Netskopeのパートナー中心の市場開拓戦略により、パートナーは企業のセキュリティを変革しながら、成長と収益性を最大化できます。
                                Netskopeソリューション
                                Netskope Cloud Exchange
                                Netskope Cloud Exchange(CE)は、セキュリティ体制全体で投資を活用するための強力な統合ツールをお客様に提供します。
                                  Netskopeテクニカルサポート
                                  Netskopeテクニカルサポート
                                  クラウドセキュリティ、ネットワーキング、仮想化、コンテンツ配信、ソフトウェア開発など、多様なバックグラウンドを持つ全世界にいる有資格のサポートエンジニアが、タイムリーで質の高い技術支援を行っています。
                                    Netskopeの動画
                                    Netskopeトレーニング
                                    Netskopeのトレーニングは、クラウドセキュリティのエキスパートになるためのステップアップに活用できます。Netskopeは、お客様のデジタルトランスフォーメーションの取り組みにおける安全確保、そしてクラウド、Web、プライベートアプリケーションを最大限に活用するためのお手伝いをいたします。

                                      Insider Threats Packing Their Bags With Corporate Data

                                      May 11 2023

                                      Introduction

                                      The insider story, whether it is a disgruntled or negligent employee, is one that is familiar to many organizations. The 2020 Securonix Insider Threat Report found that 60% of the insider threat cases they dealt with involved a “flight risk” employee, or an individual that is getting ready to leave their employment. In today’s cyber ecosystem identifying these threats has become more important than ever, since more organizations are responsible for personally identifiable information (PII) and intellectual property (IP) than ever before. Since every organization is likely responsible for sensitive data and has these “flight risk” users, a strategy for addressing insider threats is necessary.

                                      In this blog, we will summarize a study we conducted on 58,314 people that left their employment, the behaviors they exhibited before leaving, and the nature of the data they attempted to take with them. Furthermore, we will outline some techniques you can use in your own environment to find similar cases of data exfiltration via cloud apps.

                                      We found that the last 50 days of employment is when a majority of the data movement occurs.

                                      The analysis presented in this blog post is based on anonymized usage data collected by the Netskope Security Cloud platform relating to a subset of Netskope customers with prior authorization.

                                      Scope

                                      Insider threat can mean a vast array of things, but for the sake of scoping this research, when we say insider, we mean an individual that has exfiltrated sensitive corporate data using cloud apps, where sensitive data is defined as data that could hurt an organization if it were to be leaked to the public or a competitor. 

                                      We are not focused on insiders doing any of the following:

                                      • Using a USB drive to move data
                                      • Printing out documents and walking out of the building with them
                                      • Taking pictures of a monitor with their phones

                                      Overview of our approach

                                      Our approach to addressing this threat can be broken down into three elements:

                                      1. Having the correct architecture to monitor cloud traffic
                                      2. Applying labels to the data being moved
                                      3. Analyzing the data for anomalous behavior 

                                      Architecture

                                      Architecture to monitor cloud traffic

                                      To successfully identify data movement to the cloud from the corporate environment, we monitor both inline forward proxy logs and API audit logs. The inline forward proxy logs are able to identify data movement to managed and unmanaged cloud applications. And the audit logs identify access from managed and unmanaged devices. All of this information is then anonymized and analyzed for anomalies. 

                                      Applying labels

                                      The cloud traffic needs to be labeled via two mechanisms so we can gain the most insight from the logs.

                                      Applying Instance Labels

                                      We apply instance labels by looking at the application itself, the name of the instance extracted by the proxy, and the domain of the username used to log into the application. For example, a user named John working at Acme uses Google Gmail for personal correspondence, and Acme provides him a Google Gmail account for business correspondence. We consider these two instances of the same app; John’s personal instance and the Acme organization instance.

                                      ApplicationDomainLabel
                                      Google Driveacme.comBusiness
                                      Google Drivegmail.comPersonal
                                      Google Drivefoobar.comUnknown

                                      Applying Data Labels

                                      To apply data labels, the files in the traffic are sent to the DLP module to ensure compliance with organization-configured DLP policies. When files that violate the policies set by the organization are moved, an alert is raised.

                                      When these labels are applied to the data, the result looks something like the following:

                                      UserAppApp Instance labelActivityFile NameDLP Violation
                                      [email protected]Google Drivepersonaluploadblack_project.docxSecret project code names

                                      Anomaly Detection

                                      All of the above events are then sent to an anomaly detection component that identifies unusual deviations from the individuals’ baseline behavior. This behavior is focused on data movement anomalies that violate corporate DLP policy.

                                      Anomaly detection looks for spikes in activities that are different from the user’s baseline behavior. For example, if a user usually uploads under 2 MB to their personal applications but suddenly uploads 2 TB to their personal Google Drive in one day, this would be anomalous behavior.

                                      The key to accurately detecting insider threats exfiltrating data to cloud apps is to have all three components, instance labels, data labels, and anomaly detection. Omitting one or more of these components results in a significant decrease in detection efficacy. 

                                      Data Exfiltration

                                      15% of the “flight risk” employees moved data to personal cloud applications, but only 2% of the “flight risk” employees violated corporate policies.

                                      The 2% of “flight risks” that violated corporate policies moved:

                                      • 94% of the files in the last 91 days
                                      • 84% of the files in the last 49 days
                                      • 74% of the files in the last 28 days
                                      • 49% of the files in the last 14 days

                                      So, if you were to monitor the last 14 days of employment, you may detect about half of the files being exfiltrated. In order to catch the full 2% of users, you would need proactive analysis for a longer period. 

                                      Conclusion

                                      In this blog, we reviewed the insights we gathered by looking at more than 58k users that left their employment. We saw that about 2% of individuals that leave their employment mishandle corporate data before leaving. While 2% might not seem like a lot, the data that these individuals target ends up being about 70% IP and PII. To mitigate this, we need to:

                                      • Understand that 2% of “flight risks” take sensitive data with them
                                      • And that 75% of data is uploaded in the last 50 days, before the typical 14 day notice
                                      • But by monitoring the nature, volume, and direction of data moved we are able to detect these cases

                                      If you enjoyed the insights from this blog post, keep up with the latest from Netskope Threat Labs here.  

                                      author image
                                      Dagmawi Mulugeta
                                      Dagmawi Mulugeta is a security researcher with interests in cloud security, incident analysis & prediction, exploit development, and large-scale data analysis.
                                      Dagmawi Mulugeta is a security researcher with interests in cloud security, incident analysis & prediction, exploit development, and large-scale data analysis.
                                      author image
                                      Colin Estep
                                      Colin Estep has 16 years of experience in software, with 11 years focused on information security. He's a researcher at Netskope, where he focuses on security for AWS and GCP.
                                      Colin Estep has 16 years of experience in software, with 11 years focused on information security. He's a researcher at Netskope, where he focuses on security for AWS and GCP.

                                      Stay informed!

                                      Subscribe for the latest from the Netskope Blog