Netskope named a Leader in the 2024 Gartner® Magic Quadrant™ for Security Service Edge. Get the report

  • Why Netskope chevron

    Changing the way networking and security work together.

  • Our Customers chevron

    Netskope serves more than 3,000 customers worldwide including more than 25 of the Fortune 100

  • Our Partners chevron

    We partner with security leaders to help you secure your journey to the cloud.

Still Highest in Execution.
Still Furthest in Vision.

Learn why 2024 Gartner® Magic Quadrant™ named Netskope a Leader for Security Service Edge the third consecutive year.

Get the report
Netskope Named a Leader in the 2024 Gartner® Magic Quadrant™ for Security Service Edge graphic for menu
We help our customers to be Ready for Anything

See our customers
Woman smiling with glasses looking out window
Netskope’s partner-centric go-to-market strategy enables our partners to maximize their growth and profitability while transforming enterprise security.

Learn about Netskope Partners
Group of diverse young professionals smiling
Your Network of Tomorrow

Plan your path toward a faster, more secure, and more resilient network designed for the applications and users that you support.

Get the white paper
Your Network of Tomorrow
Introducing the Netskope One Platform

Netskope One is a cloud-native platform that offers converged security and networking services to enable your SASE and zero trust transformation.

Learn about Netskope One
Abstract with blue lighting
Embrace a Secure Access Service Edge (SASE) architecture

Netskope NewEdge is the world’s largest, highest-performing security private cloud and provides customers with unparalleled service coverage, performance and resilience.

Learn about NewEdge
Netskope Cloud Exchange

The Netskope Cloud Exchange (CE) provides customers with powerful integration tools to leverage investments across their security posture.

Learn about Cloud Exchange
Netskope video
The platform of the future is Netskope

Intelligent Security Service Edge (SSE), Cloud Access Security Broker (CASB), Cloud Firewall, Next Generation Secure Web Gateway (SWG), and Private Access for ZTNA built natively into a single solution to help every business on its journey to Secure Access Service Edge (SASE) architecture.

Go to Products Overview
Netskope video
Next Gen SASE Branch is hybrid — connected, secured, and automated

Netskope Next Gen SASE Branch converges Context-Aware SASE Fabric, Zero-Trust Hybrid Security, and SkopeAI-powered Cloud Orchestrator into a unified cloud offering, ushering in a fully modernized branch experience for the borderless enterprise.

Learn about Next Gen SASE Branch
People at the open space office
Designing a SASE Architecture For Dummies

Get your complimentary copy of the only guide to SASE design you’ll ever need.

Get the eBook
Make the move to market-leading cloud security services with minimal latency and high reliability.

Learn about NewEdge
Lighted highway through mountainside switchbacks
Safely enable the use of generative AI applications with application access control, real-time user coaching, and best-in-class data protection.

Learn how we secure generative AI use
Safely Enable ChatGPT and Generative AI
Zero trust solutions for SSE and SASE deployments

Learn about Zero Trust
Boat driving through open sea
Netskope achieves FedRAMP High Authorization

Choose Netskope GovCloud to accelerate your agency’s transformation.

Learn about Netskope GovCloud
Netskope GovCloud
  • Resources chevron

    Learn more about how Netskope can help you secure your journey to the cloud.

  • Blog chevron

    Learn how Netskope enables security and networking transformation through security service edge (SSE)

  • Events and Workshops chevron

    Stay ahead of the latest security trends and connect with your peers.

  • Security Defined chevron

    Everything you need to know in our cybersecurity encyclopedia.

Security Visionaries Podcast

The Intersection of Zero Trust and National Security
On the latest episode of Security Visionaries, co-hosts Max Havey and Emily Wearmouth sit down for a conversation with guest Chase Cunningham (AKA Dr. Zero Trust) about zero trust and national security.

Play the podcast
The Intersection of Zero Trust and National Security
Latest Blogs

Read how Netskope can enable the Zero Trust and SASE journey through security service edge (SSE) capabilities.

Read the blog
Sunrise and cloudy sky
SASE Week 2023: Your SASE journey starts now!

Replay sessions from the fourth annual SASE Week.

Explore sessions
SASE Week 2023
What is SASE?

Learn about the future convergence of networking and security tools in today’s cloud dominant business model.

Learn about SASE
  • Company chevron

    We help you stay ahead of cloud, data, and network security challenges.

  • Leadership chevron

    Our leadership team is fiercely committed to doing everything it takes to make our customers successful.

  • Customer Solutions chevron

    We are here for you and with you every step of the way, ensuring your success with Netskope.

  • Training and Certification chevron

    Netskope training will help you become a cloud security expert.

Supporting sustainability through data security

Netskope is proud to participate in Vision 2045: an initiative aimed to raise awareness on private industry’s role in sustainability.

Find out more
Supporting Sustainability Through Data Security
Thinkers, builders, dreamers, innovators. Together, we deliver cutting-edge cloud security solutions to help our customers protect their data and people.

Meet our team
Group of hikers scaling a snowy mountain
Netskope’s talented and experienced Professional Services team provides a prescriptive approach to your successful implementation.

Learn about Professional Services
Netskope Professional Services
Secure your digital transformation journey and make the most of your cloud, web, and private applications with Netskope training.

Learn about Training and Certifications
Group of young professionals working

A Look at the Nim-based Campaign Using Microsoft Word Docs to Impersonate the Nepali Government

Dec 20 2023


Threat actors often employ stealthy attack techniques to elude detection and stay under the defender’s radar. One way they do so is by using uncommon programming languages to develop malware. Using an uncommon programming language to develop malware provides several benefits, including:

  • Evading some signature based detections
  • Impeding analysis by malware analysts that are unfamiliar with the language
  • Limited community detection and published analysis

Netskope recently analyzed a malicious backdoor written in Nim, which is a relatively new programming language. Netskope Threat labs has observed an increase in Nim-based malware over the past year and expects Nim-based malware to become more popular as attackers continue to modify existing Nim-based samples. One of the highest-profile Nim-based malware families was the Dark Power ransomware, which began spreading in the wild earlier this year.

This blog post provides a breakdown of a recent targeted threat that uses Word document bait to deliver a Nim backdoor. 

Delivery Method

A malicious Word document was used to drop the Nim backdoor. The document was sent as an email attachment, where the sender claims to be a Nepali government official sending security arrangements. Despite the security controls placed around macros in Office files, we are still seeing APT-attributed malware using them to drop their payload, like the Menorah malware we analyzed a couple of months ago.

Initially opening the file will show a blank document with an instruction to enable macros. When the user clicks “Enable Content,” the auto-trigger routine (Document_Open) in the code will execute. Once the main function is called, the code is executed through additional VBA functions inside the document.

Malicious Word file prior enabling macro

Defense Evasion

To help bypass AV and static based detections, the VBA project is password protected and macros are obfuscated using the Chr( ) VBA function and string concatenation. The VBA code is split into the four subroutines in the image below.

sch_task is a function that creates a VBscript named “OCu3HBg7gyI9aUaB.vbs” that will serve as the chain trigger. Initially, the VBscript is created in the AppData startup folder (C:\Users\<user>\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup\OCu3HBg7gyI9aUaB.vbs) and is set as a hidden file. Oddly, some variables are initialized in one function, but then utilized in a different function/s, which could be meant to confuse static analysis. Some strings referring to directories and libraries are split and then concatenated to evade static detection. 

VBA code for sch_task routine.

hide_cons is a function to create another VBScript named “skriven.vbs,” which will be used by “8lGghf8kIPIuu3cM.bat” as a shell to run other scripts. More detailed info about this batch script is found below. Again, some strings referring to directories and libraries are split and then concatenated.

VBA code for hide_cons routine.

read_shell is a function that creates the payload named conhost.exe, which is inside a ZIP archive. As can be seen from the screenshot below of the macro code, it assembles the ZIP from an array of decimals (by converting each to byte) stored in the “UserForm1” object. The resulting byte array is the actual ZIP file and is dropped to  C:\Users\<user>\AppData\Local\Microsoft\

VBA code for read_shell routine.
UserForm1 Containing Decimal/Bytes.

vb_chainis a function mainly for creating “8lGghf8kIPIuu3cM.bat”, which will be the stage of infection before the final payload. Exact file paths are generated by the VBA macro before writing to the batch file.

vb_chain code snapshot.

Dropped Files Summary:

e2a3edc708016316477228de885f0c39.doc drops:

  • OCu3HBg7gyI9aUaB.vbs (C:\Users\<user>\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup\OCu3HBg7gyI9aUaB.vbs)
  • skriven.vbs (C:\Users\<user>\AppData\Local\skriven.vbs)
  • (C:\Users\<user>\AppData\Local\Microsoft\
  • 8lGghf8kIPIuu3cM.bat (C:\Users\<jack>\AppData\Local\8lGghf8kIPIuu3cM.bat) drops these in C:\Users\<user>\AppData\Local:
    • unzFile.vbs
    • unz.vbs
    • 2L7uuZQboJBhTERK.bat
    • 2BYretPBD4iSQKYS.bat
    • d.bat
    • e.bat

Nim Backdoor

The Word document drops a malicious backdoor named “conhost.exe”. The malware is written in Nim and was likely compiled on September 20, 2023. Nim is a statically typed compiled programming language. Its versatility shines through its ability to be compiled to C, C++, or JavaScript, coupled with a Pythonic syntax for a developer-friendly experience.

The backdoor runs within the same privilege as the current user logged in. It’s looking to continue its ploy that the file was from a Nepali authority by imitating government domains for its C&C server ([.]govnp[.]org). When this backdoor is left undetected, users are at risk of having attackers gaining remote access.

Even though the C2 servers are no longer accessible at the time of analysis, we were still able to extrapolate some of its behaviors, which can be seen below.

Anti-analysis Technique

The malware performs a simple background check before connecting to its command and control server. Initially, the Nim backdoor spawns a command prompt to run tasklist.exe and checks for any processes running from its list of known analysis tools. The backdoor will terminate itself shortly if it sees any of the analysis tools from the list running.

Processes the backdoor avoids

Command and control through web protocol

Once the backdoor confirms there are no analysis tools running, it will spawn another command prompt instance to get the machine’s hostname, then connect to its C&C server. It encrypts the hostname with a function named bakery. The encrypted hostname is encoded twice in base64, spliced behind a randomly chosen C&C server URL, and then concatenated with the “.asp” suffix at the end to obtain the URL of the final command. The command delivered by the C&C server is obtained through an HTTP GET request. 

Response data from GET contains the command from the C&C server. If the response data is different from the last time it was fetched, it means that the C&C server has issued a new command. Otherwise it will be dormant and keep requesting the command from the C&C server. Decryption of response data (command) is done by the confectionary function, then concatenated with cmd /c to execute the command. The execution result is also sent back to the server through a GET request. The key used for encryption and decryption is “NPA”, which may be an abbreviation of NP (Nepal) Agent.

Screenshot of network traffic specific to the sample.

The sample contacts the following C2 hosts:

  • mail[.]mofa[.]govnp[.]org
  • nitc[.]govnp[.]org
  • mx1[.]nepal[.]govnp[.]org
  • dns[.]govnp[.]org

Persistence through Startup Folder and Scheduled Task

To retain access on the machine, a VBscript named “OCu3HBg7gyI9aUaB.vbs”  is placed in the startup folder. The script will initially confirm an internet connection using WMI’s “Win32_PingStatus” class to ping[.]com. If successful, it will run a batch file named “8lGghf8kIPIuu3cM.bat”.

The main task of the batch file “8lGghf8kIPIuu3cM.bat” is to drop files that will further unpack and create a scheduled task for the payload. The batch file will create more scripts that will carry out these subtasks:

  • unz.vbs is used for decompressing the executable out from the archive into the same directory
  • unzFile.vbs creates unz.vbs
  • 2L7uuZQboJBhTERK.bat is just for chaining; runs unzFile.vbs then runs 2BYretPBD4iSQKYS.bat
  • 2BYretPBD4iSQKYS.bat is just for chaining; runs unz.vbs then runs d.bat
  • d.bat creates a scheduled task of the unpacked payload (conhost.exe) then runs e.bat
  • e.bat deletes itself and the other scripts created by 8lGghf8kIPIuu3cM.bat

The batch file named “d.bat” creates a scheduled task to attain another persistent execution of the malware on the target machine. The scheduled task is named “ConsoleHostManager” as seen in the below screenshot.

Screenshot for Scheduled Task created.

Netskope Detection

Netskope Advanced Threat Protection provides proactive coverage against zero-day and APT samples of malicious Office documents using both our static analysis engines and cloud sandbox. The following screenshot shows the detection for e2a3edc708016316477228de885f0c39, indicating it was detected by Netskope Cloud Sandbox, Netskope Advanced Heuristic Engine, and Netskope Threat Intelligence.


Malware written in uncommon programming languages puts the security community at a disadvantage as researchers and reverse engineers’ unfamiliarity can hamper their investigation. Nim is one of the young programming languages increasingly abused by malware authors. Aside from its familiar syntax, its cross-compilation features allow attackers to write one malware variant and have it cross-compiled to target different platforms. Netskope Threat Labs will continue monitoring the usage of unpopular programming languages.






Thank you to Juan Diego Huet for helping analyze the sample files and contributing to this blog.

author image
Ghanashyam Satpathy
Ghanashyam Satpathy is a Principal Researcher with the Netskope Efficacy team, which drives the detection effectiveness. His background is building threat detection products using AI/ML technology for cloud and endpoint security.
author image
Jan Michael Alcantara
Jan Michael Alcantara is an experienced incident responder with a background on forensics, threat hunting, and incident analysis.

Stay informed!

Subscribe for the latest from the Netskope Blog