Join us at Netskope’s SASE Summit, coming to a city near you! Register now.

  • Security Service Edge Products

    Protect against advanced and cloud-enabled threats and safeguard data across all vectors.

  • Borderless SD-WAN

    Confidently provide secure, high-performance access to every remote user, device, site, and cloud.

  • Platform

    Unrivaled visibility and real-time data and threat protection on the world's largest security private cloud.

The platform of the future is Netskope

Intelligent Security Service Edge (SSE), Cloud Access Security Broker (CASB), Cloud Firewall, Next Generation Secure Web Gateway (SWG), and Private Access for ZTNA built natively into a single solution to help every business on its journey to Secure Access Service Edge (SASE) architecture.

Go to Products Overview
Netskope video
Borderless SD-WAN: Ushering in the New Era of Borderless Enterprise

Netskope Borderless SD-WAN offers an architecture that converges zero trust principles and assured application performance to provide unprecedented secure, high-performance connectivity for every site, cloud, remote user, and IoT device.

Read the article
Borderless SD-WAN
Netskope delivers a modern cloud security stack, with unified capabilities for data and threat protection, plus secure private access.

Explore our platform
Birds eye view metropolitan city
Make the move to market-leading cloud security services with minimal latency and high reliability.

Learn about NewEdge
Lighted highway through mountainside switchbacks
Safely enable the use of generative AI applications with application access control, real-time user coaching, and best-in-class data protection.

Learn how we secure generative AI use
Safely Enable ChatGPT and Generative AI
Zero trust solutions for SSE and SASE deployments

Learn about Zero Trust
Boat driving through open sea
Netskope enables a safe, cloud-smart, and fast journey to adopt cloud services, apps, and public cloud infrastructure.

Learn about Industry Solutions
Wind turbines along cliffside
  • Our Customers

    Netskope serves more than 2,000 customers worldwide including more than 25 of the Fortune 100

  • Customer Solutions

    We are here for you and with you every step of the way, ensuring your success with Netskope.

  • Training and Certification

    Netskope training will help you become a cloud security expert.

We help our customers to be Ready for Anything

See our Customers
Woman smiling with glasses looking out window
Netskope’s talented and experienced Professional Services team provides a prescriptive approach to your successful implementation.

Learn about Professional Services
Netskope Professional Services
Secure your digital transformation journey and make the most of your cloud, web, and private applications with Netskope training.

Learn about Training and Certifications
Group of young professionals working
  • Resources

    Learn more about how Netskope can help you secure your journey to the cloud.

  • Blog

    Learn how Netskope enables security and networking transformation through security service edge (SSE).

  • Events & Workshops

    Stay ahead of the latest security trends and connect with your peers.

  • Security Defined

    Everything you need to know in our cybersecurity encyclopedia.

Security Visionaries Podcast

Bonus Episode 2: The Magic Quadrant for SSE and Getting SASE Right
Mike and Steve discuss the Gartner® Magic Quadrant™ for Security Service Edge (SSE), Netskope’s positioning, and how the current economic climate will impact the SASE journey.

Play the podcast
Bonus Episode 2: The Magic Quadrant for SSE and Getting SASE Right
Latest Blogs

How Netskope can enable the Zero Trust and SASE journey through security service edge (SSE) capabilities.

Read the blog
Sunrise and cloudy sky
Netskope AWS Immersion Day World Tour 2023

Netskope has developed a variety of hands-on labs, workshops, in-depth webinars and demos to educate and assist AWS customers in the usage and deployment of Netskope products.

Learn about AWS Immersion Day
AWS Partner
What is Security Service Edge?

Explore the security side of SASE, the future of network and protection in the cloud.

Learn about Security Service Edge
Four-way roundabout
  • Company

    We help you stay ahead of cloud, data, and network security challenges.

  • Why Netskope

    Cloud transformation and work from anywhere have changed how security needs to work.

  • Leadership

    Our leadership team is fiercely committed to doing everything it takes to make our customers successful.

  • Partners

    We partner with security leaders to help you secure your journey to the cloud.

Supporting sustainability through data security

Netskope is proud to participate in Vision 2045: an initiative aimed to raise awareness on private industry’s role in sustainability.

Find out more
Supporting Sustainability Through Data Security
Highest in Execution. Furthest in Vision.

Netskope recognized as a Leader in the 2023 Gartner® Magic Quadrant™ for Security Service Edge.

Get the report
Netskope recognized as a Leader in the 2023 Gartner® Magic Quadrant™ for Security Service Edge.
Thinkers, builders, dreamers, innovators. Together, we deliver cutting-edge cloud security solutions to help our customers protect their data and people.

Meet our team
Group of hikers scaling a snowy mountain
Netskope’s partner-centric go-to-market strategy enables our partners to maximize their growth and profitability while transforming enterprise security.

Learn about Netskope Partners
Group of diverse young professionals smiling

AsyncRAT: Using Fully Undetected Downloader

Aug 29 2022


AsyncRAT is an open-source remote administration tool released on GitHub in January 2019. It’s designed to remotely control computers via encrypted connection, providing complete control via functionalities such as:

  • View and record screen
  • Keylogger
  • Upload, download and execute files
  • Chat communication
  • Persistence mechanisms
  • Disable Windows Defender
  • Shutdown / Restart the machine
  • DOS attack

Although the official GitHub repository contains a legal disclaimer, AsyncRAT is popularly used by attackers and even some APT groups. Netskope Threat Labs recently came across a FUD (Fully Undetected) Batch script which is downloading AsyncRAT from an Amazon S3 Bucket. At the time of our analysis, the Batch script wasn’t being detected by any of the antivirus engines on VirusTotal. The attacker used some simple techniques to make the script fly under the radar, as we will describe later in this analysis.

The downloaded file (second stage) is a PowerShell script that creates and uses multiple files to execute AsyncRAT, which is injected into a legitimate process.

AsyncRAT Attack Flow Summary

In this blog post, we will analyze the complete infection flow of AsyncRAT, from the FUD BAT downloader spotted by the MalwareHunterTeam to the last payload.

Stage 01 – FUD Downloader

The first stage is a batch script that contains zero detections on VirusTotal.

Screenshot of FUD AsyncRAT downloader.
FUD AsyncRAT downloader.

Although no AV vendor is detecting the file, it contains many detections via Sigma and IDS rules, as well as by sandboxes used by VirusTotal.

Screenshot of Sigma rules detecting malicious behavior.
Sigma rules detecting malicious behavior.

The file not being detected is likely due to a long string added in the file multiple times (more than 100) by the attacker.

Screenshot of commented strings added to the file.
Commented strings added to the file.

The string is always the same and is in Japanese. Doing a rough translation, this string seems to be nonsense words added by the attacker.

Screenshot of the rough translation from the string found multiple times in the file.
Rough translation from the string found multiple times in the file.

The malicious command is quite simple and it can be found within the nonsense strings. It’s slightly obfuscated, which probably contributes to the absence of detection.

Example of command executed by the batch file.
Command executed by the batch file.

The command downloads and executes the second stage via PowerShell from an Amazon S3 bucket.

Stage 02 – PowerShell

The file downloaded from the Amazon S3 bucket is a PowerShell script. As we demonstrated in the diagram in the summary section, this script creates multiple files to execute the last stage.

First, it creates a folder named “Not” in “C:\ProgramData”.

Example of second stage creating a directory.
Second stage creating a directory.

Then, it creates five files in this directory. The primary goal of this stage is to run another PowerShell script in a chained execution, described below:

  1. File “xx.vbs” is executed by the second stage;
  2. File “xx.vbs” executes file “xx.bat”;
  3. File “xx.bat” executes file “Bin.vbs” via scheduled task;
  4. File “Bin.vbs” executes file “Bin.bat”;
  5. And finally, “Bin.bat” executes “Bin.ps1” via PowerShell.
Example of chained execution to run “Bin.ps1”.
Chained execution to run “Bin.ps1”.

There are two PE files within the last PowerShell script.

Example of two PE files within the last PowerShell script.
Two PE files within the last PowerShell script.

The first file is known as “RunPE” and it’s used to inject AsyncRAT into a legitimate process, which is the second PE file in the script.

Example of PowerShell running RunPE.
PowerShell running RunPE.

The PowerShell script loads RunPE directly into memory, so none of the PE files are written into disk.

Stage 03 – RunPE

This file is responsible for injecting AsyncRAT into another process using Process Hollowing. It’s developed in .NET and protected with Confuser.

Screenshot of RunPE details.
RunPE details.

The PowerShell script in the second stage loads RunPE in memory and calls a method named “Execute” from “GIT.local”. The method receives the path of the targeted executable (“C:\Windows\Microsoft.NET\Framework\v4.0.30319\aspnet_compiler.exe”) and the AsyncRAT bytes in the arguments.

Example of the method executed by the PowerShell.
Method executed by the PowerShell.

After removing part of the obfuscation, we can confirm that AsyncRAT is being injected via Process Hollowing.

Screenshot of some of the API calls used for Process Hollowing.
Some of the API calls used for Process Hollowing.

Stage 04 – AsyncRAT

As previously mentioned, AsyncRAT is an open-source remote administration tool developed in .NET, and it’s often abused by attackers. The specific sample analyzed in this blog post was likely compiled on July 22, 2022.

Screenshot of AsyncRAT sample delivered by the FUD Batch script.
AsyncRAT sample delivered by the FUD Batch script.

This sample doesn’t contain any obfuscation or protection, so it’s not difficult to understand the code once decompiled. 

Screenshot of decompiled AsyncRAT sample.
Decompiled AsyncRAT sample.

We can summarize AsyncRAT’s main execution flow in six-steps:

  1. Initialize its configuration (decrypts the strings);
  2. Verifies and creates a Mutex (to avoid running duplicated instances);
  3. If enabled in the settings, exits if a virtualized or analysis environment is detected;
  4. If enabled in the settings, establishes persistence;
  5. If enabled in the settings, sets its own process as critical;
  6. Starts the communication with the server.
Example of the AsyncRAT main method.
AsyncRAT main method.

AsyncRAT’s configuration is decrypted within the “InitializeSettings” method.

Screenshot of AsyncRAT method that initializes the configuration.
AsyncRAT method that initializes the configuration.

AsyncRAT uses AES-256 in CBC mode to decrypt the strings.

Example of AsyncRAT method that decrypts data using AES.
AsyncRAT method that decrypts data using AES.

This function reads a base64 encoded string, where the first 32 bytes represents the HMAC, the following 16 bytes the decryption IV, and the remaining bytes are the encrypted data.

Example of AsyncRAT variables storing encrypted data.
AsyncRAT variables storing encrypted data.

We created a Python script that can be used to decrypt AsyncRAT strings using the same algorithm. 

Example of decrypting AsyncRAT configuration.
Decrypting AsyncRAT configuration.

The anti-analysis feature of this sample is disabled, but AsyncRAT provides the option to detect virtualized and analysis environments via simple techniques, such as checking the disk size, checking the OS manufacturer and model, etc.

Example of AsyncRAT anti-analysis method.
AsyncRAT anti-analysis method.

It’s also able to establish persistence via registry or a scheduled task.

Screenshot of AsyncRAT persistence mechanisms.
AsyncRAT persistence mechanisms.

Furthermore, AsyncRAT stores the C2 address and port within its configuration. However, it also provides the option to download this information from Pastebin.

Example of method to download C2 address and port from Pastebin.
Method to download C2 address and port from Pastebin.

After all the steps executed by the main function, which we summarized earlier, AsyncRAT starts an encrypted communication with the C2 server. Once connected, the attacker has full control over the device through GUI, as shown in the example below.

Example of AsyncRAT controller.
Example of AsyncRAT controller.


In this blog post, we analyzed the complete attack flow of AsyncRAT, from the downloader to the last payload. In this scenario, the attacker used simple techniques to make the downloader fly under the radar, being detected by none of the engines on VirusTotal. Furthermore, since AsyncRAT is open-source, one could easily change its code to add or remove functionalities as needed.

Batch scripts like this are commonly used by attackers as an initial foothold. We expect an increase in the use of this file type and others (such as LNK and VBS) after Microsoft released a protection against malicious Microsoft Office macros, which are also popularly abused to deliver malware. Netskope Threat Labs always recommends users avoid opening files of unknown origin, especially those received by email. For organizations, we strongly recommend security training for employees and to use a secure web gateway with advanced threat protection, being able to scan and detect malicious files in real-time.


Netskope Threat Labs is actively monitoring this campaign and has ensured coverage for all known threat indicators and payloads. 

  • Netskope Threat Protection
    • Generic.AsyncRAT.B.80EDEB92
  • Netskope Advanced Threat Protection provides proactive coverage against this threat.
    • Gen.Malware.Detect.By.StHeur indicates a sample that was detected using static analysis
    • Gen.Malware.Detect.By.Sandbox indicates a sample that was detected by our cloud sandbox


All the IOCs related to this campaign and scripts can be found in our GitHub repository.

author image
Gustavo Palazolo
Gustavo Palazolo is an expert in malware analysis, reverse engineering and security research, working many years in projects related to electronic fraud protection. He is currently working on the Netskope Research Team, discovering and analyzing new malware threats.