Netskope named a Leader in the 2024 Gartner® Magic Quadrant™ for Security Service Edge. Get the report

  • Why Netskope chevron

    Changing the way networking and security work together.

  • Our Customers chevron

    Netskope serves more than 3,000 customers worldwide including more than 25 of the Fortune 100

  • Our Partners chevron

    We partner with security leaders to help you secure your journey to the cloud.

Still Highest in Execution.
Still Furthest in Vision.

Learn why 2024 Gartner® Magic Quadrant™ named Netskope a Leader for Security Service Edge the third consecutive year.

Get the report
Netskope Named a Leader in the 2024 Gartner® Magic Quadrant™ for Security Service Edge graphic for menu
We help our customers to be Ready for Anything

See our customers
Woman smiling with glasses looking out window
Netskope’s partner-centric go-to-market strategy enables our partners to maximize their growth and profitability while transforming enterprise security.

Learn about Netskope Partners
Group of diverse young professionals smiling
Your Network of Tomorrow

Plan your path toward a faster, more secure, and more resilient network designed for the applications and users that you support.

Get the white paper
Your Network of Tomorrow
Introducing the Netskope One Platform

Netskope One is a cloud-native platform that offers converged security and networking services to enable your SASE and zero trust transformation.

Learn about Netskope One
Abstract with blue lighting
Embrace a Secure Access Service Edge (SASE) architecture

Netskope NewEdge is the world’s largest, highest-performing security private cloud and provides customers with unparalleled service coverage, performance and resilience.

Learn about NewEdge
Netskope Cloud Exchange

The Netskope Cloud Exchange (CE) provides customers with powerful integration tools to leverage investments across their security posture.

Learn about Cloud Exchange
Netskope video
The platform of the future is Netskope

Intelligent Security Service Edge (SSE), Cloud Access Security Broker (CASB), Cloud Firewall, Next Generation Secure Web Gateway (SWG), and Private Access for ZTNA built natively into a single solution to help every business on its journey to Secure Access Service Edge (SASE) architecture.

Go to Products Overview
Netskope video
Next Gen SASE Branch is hybrid — connected, secured, and automated

Netskope Next Gen SASE Branch converges Context-Aware SASE Fabric, Zero-Trust Hybrid Security, and SkopeAI-powered Cloud Orchestrator into a unified cloud offering, ushering in a fully modernized branch experience for the borderless enterprise.

Learn about Next Gen SASE Branch
People at the open space office
Designing a SASE Architecture For Dummies

Get your complimentary copy of the only guide to SASE design you’ll ever need.

Get the eBook
Make the move to market-leading cloud security services with minimal latency and high reliability.

Learn about NewEdge
Lighted highway through mountainside switchbacks
Safely enable the use of generative AI applications with application access control, real-time user coaching, and best-in-class data protection.

Learn how we secure generative AI use
Safely Enable ChatGPT and Generative AI
Zero trust solutions for SSE and SASE deployments

Learn about Zero Trust
Boat driving through open sea
Netskope achieves FedRAMP High Authorization

Choose Netskope GovCloud to accelerate your agency’s transformation.

Learn about Netskope GovCloud
Netskope GovCloud
  • Resources chevron

    Learn more about how Netskope can help you secure your journey to the cloud.

  • Blog chevron

    Learn how Netskope enables security and networking transformation through security service edge (SSE)

  • Events and Workshops chevron

    Stay ahead of the latest security trends and connect with your peers.

  • Security Defined chevron

    Everything you need to know in our cybersecurity encyclopedia.

Security Visionaries Podcast

How to Use a Magic Quadrant and Other Industry Research
In this episode Max Havey, Steve Riley and Mona Faulkner dissect the intricate process of creating a Magic Quadrant and why it's much more than just a chart.

Play the podcast
How to Use a Magic Quadrant and Other Industry Research podcast
Latest Blogs

Read how Netskope can enable the Zero Trust and SASE journey through security service edge (SSE) capabilities.

Read the blog
Sunrise and cloudy sky
SASE Week 2023: Your SASE journey starts now!

Replay sessions from the fourth annual SASE Week.

Explore sessions
SASE Week 2023
What is Security Service Edge?

Explore the security side of SASE, the future of network and protection in the cloud.

Learn about Security Service Edge
Four-way roundabout
  • Company chevron

    We help you stay ahead of cloud, data, and network security challenges.

  • Leadership chevron

    Our leadership team is fiercely committed to doing everything it takes to make our customers successful.

  • Customer Solutions chevron

    We are here for you and with you every step of the way, ensuring your success with Netskope.

  • Training and Certification chevron

    Netskope training will help you become a cloud security expert.

Supporting sustainability through data security

Netskope is proud to participate in Vision 2045: an initiative aimed to raise awareness on private industry’s role in sustainability.

Find out more
Supporting Sustainability Through Data Security
Thinkers, builders, dreamers, innovators. Together, we deliver cutting-edge cloud security solutions to help our customers protect their data and people.

Meet our team
Group of hikers scaling a snowy mountain
Netskope’s talented and experienced Professional Services team provides a prescriptive approach to your successful implementation.

Learn about Professional Services
Netskope Professional Services
Secure your digital transformation journey and make the most of your cloud, web, and private applications with Netskope training.

Learn about Training and Certifications
Group of young professionals working

New Phishing Attacks Exploiting OAuth Authorization Flows (Part 1)

Aug 10 2021

This blog series expands upon a presentation given at DEF CON 29 on August 7, 2021.

Phishing attacks are starting to evolve from the old-school faking of login pages that harvest passwords to attacks that abuse widely-used identity systems such as Microsoft Azure Active Directory or Google Identity, both of which utilize the OAuth authorization protocol for granting permissions to third-party applications using your Microsoft or Google identity.

In the past few years, we have seen illicit grant attacks that use malicious OAuth applications created by attackers to trick a victim into granting the attacker wider permissions to the victim’s data or resources:

Instead of creating fake logins/websites, illicit grant attacks use the actual OAuth authentication/authorization flows in order to obtain the OAuth session tokens. This has the advantage of bypassing MFA authentication, with permanent or nearly indefinite access since the OAuth tokens can be continually refreshed in most cases.

In this blog series, we will review how various quirks in the implementation of different OAuth authorization flows can make it easier for attackers to phish victims due to:

  1. Attackers not needing to create infrastructure (e.g., no fake domains, websites, or applications), leading to easier and more hidden attacks
  2. An ability to easily reuse client ids of existing applications, obfuscating attacker actions in audit logs
  3. The use of default permissions (scopes), granting broad privileges to the attacker
  4. A lack of approval (consent) dialogs shown to the user
  5. An ability to obtain new access tokens with broader privileges and access, opening up lateral movement among services/APIs

Finally, we will discuss what users can do today to protect themselves from these potential new attacks.

In Part 1 of this blog series, we will provide an overview of OAuth 2.0 and two of its authorization flows, the authorization code grant and the device authorization grant.

OAuth as we know it

The OAuth 2.0 RFC 6749 was released in October 2012, and OAuth has become the standard for authorizing Internet interactions based on your Microsoft Active Directory, Google Identity, or with vendors such as Paypal or Login With Amazon. 

With OAuth authorization flows, users benefit from:

  • Not sharing their username and password with 3rd-party websites or applications—authentication is handled by the identity provider alone
  • Using a centralized set of identity credentials across applications, simplifying password management

There are multiple authorization flows within the OAuth 2.0 specification that handle a variety of authorization cases. The flows include web applications/sites, mobile/desktop applications, and devices such as Smart TVs (e.g., authorizing streaming video content to your TV). At a high level, all of the OAuth authorization flows involve the following steps in some way:

  1. An application directs the user to the identity/authorization provider for authentication and authorization of access to the user’s data or resources. 
  2. The user successfully and securely authenticates with the identity/authorization provider
  3. Depending upon the flow, the user may be presented with a consent screen that clarifies which permissions are being requested
  4. After successful authentication and authorization, an OAuth access session token is created that allows API calls using the user’s identity with the permissions approved by the user
  5. The application obtains the OAuth access token using an authorization code
  6. The application then accesses the data or resources required. OAuth access tokens usually expire in one hour, but refresh tokens are usually also returned to the application, which can be used to create new access tokens, usually indefinitely by default.

Most of us have encountered OAuth as users when authorizing access by applications such as Google Drive, Gmail, Outlook, or OneDrive. This is the most common flow, called the OAuth authorization code grant. Here we authenticate and authorize the Google Cloud CLI, gcloud, to access our GCP environment:

1. Application requests authorization by redirecting the user to the identity/authorization provide

$ gcloud auth login [email protected] --force

Your browser has been opened to visit:

2. User authentication: Enters username

Screenshot showing username authentication

3. User authentication: Enters password

Screenshot showing password authentication

4. User authorization: The user is presented with a consent screen and approves the scopes requested by the application

Screenshot of consent screen to approve the scopes requested by the application

5. Confirmation message: In some cases, a successful authorization message is shown.

Screenshot of successful confirmation message

6. Application continues: The application has retrieved the user’s OAuth access token and can now access resources.

$ gcloud auth login [email protected] --force

Your browser has been opened to visit:

You are now logged in as [[email protected]].

$ gcloud projects list

Here is what’s happening under the hood of the above flow:

Diagram of OAuth 2.0 Authorization Code Grant flow.

Device Authorization Grant

A new authorization flow, called device authorization grant, described in RFC 8628, was added in August 2019. Its purpose was to allow easier OAuth authorization on limited-input devices, such as smart TVs, where inputting credentials is tedious using TV remote controls, for enabling services such as video streaming subscriptions:

Image of Netflix login screen on a TV

With device code authorization implemented, instead of the above, the user might see an authentication/authorization process that looks more like this:

Image of Netflix mobile device login screen on a TV
Image of Netskope mobile code login screen

Now, the user can use a richer-input device such as a smartphone or computer to enter a short code in a login screen with a short URL in order to authenticate and authorize the smart TV to access content such as the user’s streaming video subscription.

Underneath the above user experience is the device code flow:

Diagram of OAuth 2.0 Device Code Authorization


There are at least three more flows in OAuth 2.0, and it’s fair to say that OAuth is complicated. 

  • It’s trying to bring secure authorization to complex interactions among three parties (identity/authorization provider, user, application/client/device), making it a challenge to secure against attackers who are looking to insert themselves into this process
  • It’s difficult to understand, by users and security professionals alike, making it difficult to secure (e.g. “What’s this long code I’m looking at?”)
  • It has to cover a variety of use cases including web server apps, native/mobile/desktop apps, devices, and javascript apps, with different flows for each, and with each flow having its own peculiarities and opportunities for abuse

At the same time, the OAuth protocol was not designed to address other important issues like the identity of each of the three parties. A user does authenticate with the identity system, but the application’s identity and, more importantly, the trustworthiness of the application is not addressed by OAuth. This, along with the complexity, leads to several areas that can be abused by attackers.

In Part 2, we will dig further into how a phishing attack is carried out using the device authorization grant flow.

author image
Jenko Hwong
Jenko has 15+ years of experience in research, product management, and engineering in cloud security, AV/AS, routers/appliances, threat intel, Windows security, vulnerability scanning and compliance. At Netskope, he researches new cloud attacks.

Stay informed!

Subscribe for the latest from the Netskope Blog