close
close
Your Network of Tomorrow
Your Network of Tomorrow
Plan your path toward a faster, more secure, and more resilient network designed for the applications and users that you support.
          Experience Netskope
          Get Hands-on With the Netskope Platform
          Here's your chance to experience the Netskope One single-cloud platform first-hand. Sign up for self-paced, hands-on labs, join us for monthly live product demos, take a free test drive of Netskope Private Access, or join us for a live, instructor-led workshops.
            A Leader in SSE. Now a Leader in Single-Vendor SASE.
            A Leader in SSE. Now a Leader in Single-Vendor SASE.
            Netskope debuts as a Leader in the Gartner® Magic Quadrant™ for Single-Vendor SASE
              Securing Generative AI for Dummies
              Securing Generative AI for Dummies
              Learn how your organization can balance the innovative potential of generative AI with robust data security practices.
                Modern data loss prevention (DLP) for Dummies eBook
                Modern Data Loss Prevention (DLP) for Dummies
                Get tips and tricks for transitioning to a cloud-delivered DLP.
                  Modern SD-WAN for SASE Dummies Book
                  Modern SD-WAN for SASE Dummies
                  Stop playing catch up with your networking architecture
                    Understanding where the risk lies
                    Advanced Analytics transforms the way security operations teams apply data-driven insights to implement better policies. With Advanced Analytics, you can identify trends, zero in on areas of concern and use the data to take action.
                        The 6 Most Compelling Use Cases for Complete Legacy VPN Replacement
                        The 6 Most Compelling Use Cases for Complete Legacy VPN Replacement
                        Netskope One Private Access is the only solution that allows you to retire your VPN for good.
                          Colgate-Palmolive Safeguards its "Intellectual Property” with Smart and Adaptable Data Protection
                          Colgate-Palmolive Safeguards its "Intellectual Property” with Smart and Adaptable Data Protection
                            Netskope GovCloud
                            Netskope achieves FedRAMP High Authorization
                            Choose Netskope GovCloud to accelerate your agency’s transformation.
                              Let's Do Great Things Together
                              Netskope’s partner-centric go-to-market strategy enables our partners to maximize their growth and profitability while transforming enterprise security.
                                Netskope solutions
                                Netskope Cloud Exchange
                                Netskope Cloud Exchange (CE) provides customers with powerful integration tools to leverage investments across their security posture.
                                  Netskope Technical Support
                                  Netskope Technical Support
                                  Our qualified support engineers are located worldwide and have diverse backgrounds in cloud security, networking, virtualization, content delivery, and software development, ensuring timely and quality technical assistance
                                    Netskope video
                                    Netskope Training
                                    Netskope training will help you become a cloud security expert. We are here to help you secure your digital transformation journey and make the most of your cloud, web, and private applications.

                                      Five Principles for the Responsible Use, Adoption and Development of AI

                                      Mar 13 2024

                                      We have been fantasising about artificial intelligence for a long time. This obsession materialises in some cultural masterpieces, with movies or books such as 2001: A Space Odyssey, Metropolis, Blade Runner, The Matrix, I, Robot, Westworld, and more. Most raise deep philosophical questions about human nature, but also explore the potential behaviours and ethics of artificial intelligence, usually through a rather pessimistic lens. Although they are only works of fiction, this goes to show how wary we are about our creations becoming our masters.

                                      The democratisation of AI reached a new step when large language models emerged. But for all the praise they have received, they have rung an equivalent amount of alarm bells. We have quickly witnessed flaws inherent in these new AI models, such as hallucinations, or unethical usage including misinformation and copyright infringements, raising concerns and calls from the brightest minds in the space. Their points were that we shouldn’t enter an AI innovation race  without considering the right security and ethical guardrails to mitigate the threat of AI for malicious purposes, or the creation of defective AI systems that could have strong ramifications on our society. 

                                      Conversations about regulating AI are happening worldwide, which should help foster healthy progress. Members of the EU are leading this effort, and already agreed the AI Act back in December, which is hoped to influence other regulations globally, comparable to what the GDPR did for global privacy. In November, a number of nations also signed an agreement to make security the number one priority in AI design requirements. 

                                      It is reassuring to see proactive governments starting to adopt AI legislation and regulations, but the legislative pace is such that we could still be a couple of years away from them having an actual impact on mitigating the unethical and unsafe use of the technology. In the meantime, organisations need to take the matter into their own hands. More companies than ever will have the opportunity to consume, experiment with, integrate, and develop AI systems in the upcoming months and years, and there are existing principles that should be considered and used as guidelines to do so responsibly. 

                                      1. Security and privacy covers four pillars: 
                                      • Using AI securely, for example by ensuring that sensitive data is not exposed to public GenAI tools, and privacy is not jeopardised. It also means considering the ethical aspects. Some jurisdictions have started penalising companies using biased AI, which may become an AI regulation standard in the future.
                                      • Protecting the organisation against AI attacks. I mentioned that AI is a new ecosystem for threat actors to target, and organisations should keep abreast of this and protect their system and people from the various and emerging threats
                                      • Building AI securely by adopting privacy by design and security by design processes. This also includes securing the environment and supply chain in which the AI is being developed. 
                                      • Protecting AI models and their training data in production, especially from threats such as data poisoning, which could make the model defective and/or biased. 
                                      1. Transparency and explainability are necessary for organisations developing AI. It means that the black box decisions and outputs of the AI system should be easy to explain and demonstrate if necessary. They should also be traceable, and expected. 
                                      1. Reflections around bias and fairness are also critical. Organisations developing AI models need to ensure they are built without bias and ensure their fairness in the long-term. This can be done by applying: 
                                      • Pre-processing; mitigation methods applied to the training dataset before a model is trained on it
                                      • In-processing; mitigation techniques incorporated into the model training process itself. 
                                      • Post-processing methods work on the predictions of the model to achieve the desirable fairness. 
                                      1. Inclusive collaboration means ensuring various stakeholders and teams (business, risk, legal and compliance, security, public relations, etc.) are engaged in the AI design and oversight process, and the use of AI is assessed across all areas. Having various stakeholders involved contributes to the prevention of bias, and to the quality of the outcome.
                                      1. Finally, it is essential to define ownership and accountability for each AI system in use. Whose responsibility is it to ensure that an AI tool continues to operate appropriately and who is accountable when something goes wrong? And what are the potential legal and regulatory implications for the organisation and the accountable individual(s)? 

                                      As we wait for more regulations, there will be further development in AI innovation, and these five principles should spawn a race to the top for responsible AI and AI safety which in itself is a differentiator becoming a competitive advantage.

                                      author image
                                      David Fairman
                                      David Fairman is an experienced CSO/CISO, strategic advisory, investor and coach. He has extensive experience in the global financial services sector.
                                      David Fairman is an experienced CSO/CISO, strategic advisory, investor and coach. He has extensive experience in the global financial services sector.

                                      Stay informed!

                                      Subscribe for the latest from the Netskope Blog